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APPENDIX A: Agendas and Summary Notes from Advisory Stakeholder Meetings 
I. List of Stakeholders and their titles and affiliations  

II. December 12, 2012 meeting  

III. March 20, 2013 meeting  

IV. March 20, 2014 meeting 

Introductory TAC Meeting Minutes 

 

Date:  March 19, 2014 – 11AM EST (10AM CST) 

RE: Introductory Technical Advisory Committee meeting 

 

Attendance: 

Caesar Singh – USDOT/RITA 

James Merritt– UDOT Pipeline Safety 

Jie Gong – Rutgers-CAIT 

Trefor Williams – Rutgers-CAIT 

Andrés Roda –Rutgers-CAIT 

Sean Zhou –Rutgers-CAIT 

Khalid Farrag – GTI 

Monica Ferrer – GTI 

Alicia Farag – GTI 

Robert Marros – GTI 

Serafino Catapano – National Grid 

Steven Hope – NYSEG 

Carrie Berard – NYSEG 

George Ragula – PSEG 

 

Agenda: 

1. Roll call for conference call attendee 

2. Overview of the Research Study 

3. Discussions and Stakeholder Feedback 

 

1. Roll Call 

• 14 conference call attendee provided self-introduction 
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2. Overview of the Research Study 

• Dr. Gong and Dr. Farrag jointly presented an overview of the research study: Mobile 

Hybrid LiDAR and Infrared Sensing for Nature Gas Pipeline Monitoring 

 

3. Discussions and Stakeholder Feedback 

• What is critical to measure? 

o The attendee on the call agreed that one of the most important components 

is the ability to identify which areas are inundated with water and areas of 

bank erosion, especially in rivers and creeks. 

o Erosion and inundation near cast iron pipes is particularly problematic. 

• What is the intended application of the developed tool? 

o This tool will be used to prioritize the deployment of inspection resources 

immediately after a natural disaster 

• How often must data be captures prior to the disaster in order to be useful? For 

example, streams change course in the spring time. 

o Dr. Gong suggested the following: 

 USGS maintains a database with biannual updates 

 Periodic update of asset database may be collected based on 

stakeholder need 

 There may be a need for targeted data collection in addition to 

annual data collection 

• What type of LiDAR survey is commercially available? 

o Dr. Gong suggested the following: 

 Aerial is available 

 UAV is close to commercial availability 

 Mobile is available but expensive 

 None of these deployment methods are fused with other sensing 

equipment 
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• The team solicited from owners/operators the most appropriate means of 

commercializing the proposed technology. Owners/operators suggested the 

following: 

o Utilities typically hire out contractors to collect data 

o Utilities will typically be on-site to observe and guide data collection 

activities 

o Post-processing is needed, and contractors typically offer 

o Getting data back in 1-3 days would be important 

o An independent perspective of site conditions is preferred 

o Output is typically post-processed data 

o They would also like to use contractors to perform the actual risk analysis.  

• Owners/operators were asked to provide inputs concerning risk analysis. 

Owners/operators offered the following: 

o There is a need to better understand what the output would be. What is 

being offered as part of the technology package.  

o Can the model be used for both prediction and assessment? 

 Dr. Farrag suggested that risk can be reviewed both as proactive 

ranking of potential threats as well as post-event review of risk-

potential sites 

o There is concern about confidence level without “data points” 

 Dr. Farrag suggested that the risk analysis is more absolute. For 

example the potential for pipe leaking may be interpreted from a 

number of potential risk factors, including material, construction 

technique, loading, outside influences and others. 

o One owner asked if the lidar would be used to pick up exposed pipe 

o Another owner asked what if they don’t have depth measurements in their 

GIS? How will the soil erosion measurements be useful? How pipe would 

be located from 2D GIS data? 

 Dr. Farrag suggested that soil cover would be the critical 

measurement. As an example if the initial measurement indicated a 
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3-ft cover, and subsequent measurements indicated 3” cover, there 

would be a problem. 

 Dr. Gong indicated that thermography would play a role in 

identifying pipeline asset locations, as well as leak detection. This 

could provide some guidance. 

o An owner asked if, in the event of a flood would water level be modeled, 

and would the model be able to be re-run to indicate water subsidence?  

o One owner indicated that identifying areas of potential damage and 

prioritize these areas for inspection would be critical, but admitted that 

visual inspection of the pipeline assets would remain regardless 

o One owner asked at what point would technology be deployed 

 Dr. Gong indicated that various technologies would be deployed 

depending on site access. Initial deployment of aerial lidar would 

provide preliminary assessments of potential risk areas. Once 

access to mobile lidar could be granted, subsequent “sweeps” 

could be conducted to refine potential risk areas 

o The team solicited potential testing sites for the technology and for proof-

of-concept 

 NYSEG indicated their outfit might be able to provide a site for 

testing 

o One operator suggested that future meetings should be face-to-face to 

provide more opportunity for interaction. 

The meeting adjourned at 12:00PM EST. 
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TAC Conference Call Minutes 

Technical Memoranda Q3-1 

 

Date:  September 29, 2014 – 10AM EST (9AM CST) 

RE: 2nd Technical Advisory Committee conference call 

Attendance: 

Serafino Catapano – National Grid 

Steven Hope – NYSEG 

Carrie Berard – NYSEG 

George Ragula – PSEG 

Richard Trieste – ConED 

Mary Holzmann – National Grid 

Ralph E. Terrell – Teco Energy 

Jie Gong – Rutgers-CAIT 

Andrés Roda –Rutgers-CAIT 

Sean Zhou –Rutgers-CAIT 

Khalid Farrag – GTI 

Alicia Farag – GTI 

Robert Marros – GTI 

 

Agenda: 

4. Roll call for conference call attendee 

5. Review survey results 

6. Research update 

7. Schedule a Face-to-Face TAC meeting 

 

4. Roll Call 

5. Review survey results 

a. Alicia Farag gave a short presentation about the survey results 

b. Survey results are attached at the end of this meeting minutes 

6. Research Update 

a. Jie Gong gave a short presentation on system integration 

b. Khalid Farrag gave a short presentation on quantifying the risk posed by soil 

movement to pipelines 
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i. The TAC members provided some feedback on the size of pipeline to be 

considered and modeled 

ii. One TAC member inquired about the source of some strain plots 

7. Schedule a Face-to-Face TAC meeting 

a. The committee discussed the scheduling of a Face-to-Face meeting at Rutgers 

b. A tentative date during the week of November 10, 2014 is selected. 

The meeting adjourned at 11:15AM EST. 
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Survey Results: 
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Date:  November 13, 2014 – 10AM EST (10AM CST) 

RE: 4th Technical Advisory Committee conference call 

 

Attendance: 

James Merritt – USDOT 

Carrie A. Berard – NYSEG 

George Ragular – PSE&G 

Khalid Farrag – GTI 

James Marean – GTI 

Pradheep Kileti – National  Grid 

Jie Gong –Rutgers 

Andres Roda – Rutgers 

Sean Zhou –Rutgers-CAIT 

 

1. Roll call for conference call attendee 

2. Presentations 

Part I: 

Andres Roda briefly introduced the CAIT, and the projects CAIT has being working 

on. 

 

Part II: 

Prof. Jie Gong made two presentations, which covered the application of airborne 

LiDAR, mobile LiDAR, and Static LiDAR in post-disaster infrastructure assessment, 

the resolution, the range, the accessibility and the timeline of three techniques were 

discussed. At the second presentation, the application of thermography integrated 

with LiDAR technology was discussed, several examples including the field test 

using EyeCGAS camera was presented. 

 

Part III: 

Dr. Khalid Farrag introduced the research GTI has been working on regarding the 

pipeline analysis and assessment. The techniques in analyzing the pipeline 

displacement, pipeline deformation, soil movement were discussed.  
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3. Discussion during the meeting 

a) George Ragular from PSE&G suggested that Laser-based gas leak detection 

might be more applicable as the first screen device than infrared gas leak 

detection. 

b) George Ragular from PSE&G commented on the risk assessment module. The 

suggestions are: (1) detailed risk assessment might not be necessary for all the 

pipeline segments as in situations where cast iron gas lines are flooded, the gas 

operators will simply replace all of them. They will not go for detailed segment 

by segment risk assessment. (2) This further suggests the risk assessment should 

consider this type of situation. James Marean from GTI further suggested that a 

layered screening approach could be implemented first before conducting detailed 

risk assessment. 

c) James Merritt from USDOT PHSAMA commented on the remote sensing-based 

threat detection and risk analysis. The suggestions are: (1) The primary scope of 

the project is to provide remote sensing data and their derived information to gas 

operators and help them make decisions instead of making decisions for them. (2) 

From remote sensing data to strain-based design is interesting, but might go too 

far because that would fall more into making decisions for gas operators.  

 

4. Mobile LiDAR System Demonstration 

The Rutgers team demonstrated the Mobile LiDAR System they have developed 

so far. The system has been integrated, though the team has noted that an 

additional lidar sensor will be added to the system for real-time point cloud 

visualization. 

The meeting adjourned at 12:00AM EST. 

 

Technical Advisory Meeting 

When  

• 10:30AM – 14:00PM, November 13, 2014 



 

18 
 

Meeting Agenda 

10:30AM – 10:35AM Welcome and Introduction 

10:35AM – 12:10PM Research Project Presentations 

10:35AM – 10:40AM Brief Introduction to CAIT and GTI 

10:40AM – 11:10AM Presentation I: Remote Sensing Technologies for Nature Gas 

Pipeline Integrity Inspection 

• Technology Evaluation 

• Technology Development 

11:10AM – 11:40AM Presentation II: Preliminary Results on Remote Sensing Data 

Integration and Processing 

• Results and Lessons Learned from Hurricane 

Sandy 

11:40AM – 12:10PM Presentation III: Preliminary Results on Post-Disaster Risk 

Assessment 

12:10AM – 13:10PM Lunch & Group Discussion 

13:10PM – 14:00PM 1st Prototype Mapping System Demonstration (Weather 

Permits) 

14:00PM  Meeting Adjourn 
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APPENDIX B: Advisory/Steering Committee Online Survey 
Enter: Company, name, email 

Introduction: 

Rutgers University and GTI are developing a mobile sensor platform and a GIS-based risk model 

to identify high risk pipe segments after a natural disaster. LiDAR will be used to collect data before 

and after a disaster to determine changes in the environment that could impact pipe integrity (for 

example, soil erosion or shifted buildings). Other devices, such as infrared cameras and leak 

sensors, could also be incorporated into the mobile sensor platform. Detected changes in the 

environment will be extracted and overlaid in a GIS to assess the potential impact on a specific 

pipe segment. The GIS-based risk model will present users with results to identify high risk pipe 

segments and make decisions regarding the deployment of survey and mitigation resources. The 

purpose of this survey is to gather information to allow the project team to gather information that 

will assist in the design and development of the technology as well as commercialization and 

implementation. Please provide complete and detailed information to the questions below.   

 

1. Does your company have records of leak, breaks, and other damages from past 

natural disasters? If so, would you be willing to share some of this data with the 

project team? 

[Yes]  (If yes, the team will further contact for data or to identify contact person] 

[No records are available for this threat] 

2. How does your company assess risk [Before] a natural disaster or other extreme 

event? 

[Statistical Data]  (Please specify source(s)] 

[Subject Matter Experts, SME] 

3. How does your company measure damage [After] a natural disaster or other 

extreme event? 

a) Patrolling/ Foot on ground inspection 

b) Remote sensing (airborne imagery/LiDAR) 

c) Smart wireless sensor network  

d) Others? Please specify 
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4. How does your company assess risk [After] a natural disaster or other extreme 

event? 

a) Use GIS-based pipeline risk analysis program (e.g., Spatial Risk Analyst, 

Esri-ArcGIS DIMP Risk Calculator Model, Opvantek Optimain, GL Noble 

Denton Uptime)  [Other, please specify ……] 

b) Own spreadsheet forms , based on Experts’ judgment 

c) Other? Please specify 

5. The mobile sensor platform being developed in this project has the ability to 

integrate various types of sensors. What leak detection devices are you currently 

using or considering using that might be useful for the mobile sensor platform? 

a) Chemical-based leak sensor  

b) Fiber optic leak detector 

c) Lasers 

d) Infrared gas leak detection camera 

e) Leak detection cable 

f) Acoustic leak detectors 

g) Ultrasonic leak sensors 

h) Pressure point analysis 

i) Others, please specify 

6. Would you prefer to own a mobile sensor platform with LiDAR and other 

sensors, or would you prefer to utilize a service provider? 

[Own] 

[Utilize a provider] 

7. How would your organization like to develop post-disaster risk analysis 

capabilities?  

a. Own a GIS software if they don’t have one 

b. Incorporate the natural disaster module into existing GIS system 

c. Have a stand-alone GIS software for natural disaster areas 

d. Use service provide 

e. Others, please specify 
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8. The project team is developing a commercialization and implementation plan as 

part of the project. Please provide your thoughts on strategies to ensure the 

technology is successfully commercialized and implemented. 

Would your company be willing to enter into a retainer-type agreement to 

incentivize the service provider to maintain the equipment and expertise necessary 

to provide this service on an infrequent basis?  

 

Could regional agreements be put in place with other local utility companies to 

minimize the cost? 

 

9. Does your company have access to a facility that simulates gas leaks? Please 

provide additional information about the facility. Are you interested in working 

with the project team to test a prototype mobile sensor platform at this facility?  

A Screenshot of the Online Survey 
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APPENDIX C: Publications and Presentations 

I. Publications 

Farrag, K. and Gong, J. (2015) “Risk Analysis of Natural Gas Distribution 

Lines Subjected to Natural Forces” Submitted to 2016 Transportation 

Research Board meeting.  

Zhou, Z., Gong, J., Roda, A., Farrag, K. (2015) “A Multi-Resolution Change 

Analysis Framework for Post-Disaster Natural Gas Pipeline Risk Assessment” 

Submitted to 2016 Transportation Research Board meeting. 

II. Presentations 

TRB Workshop 160 - Sensing Technologies for Transportation 

Applications – Jan 10, 2016 

Multi-Source Remote Sensing Data Fusion for Post-Disaster Assessment of 

Natural Gas Pipeline Systems 

Presenter: Jie Gong 

Session 428 – Hazardous Materials Transportation Research – Jan 11, 

2016 

Risk Analysis of Natural Gas Distribution Lines Subjected to Natural Forces  

Presenter: Khalid Farrag 

Session 859 – Advances in Geospatial Technology Applications in 

Transportation – Jan 13, 2016 

Multiresolution Change Analysis Framework for Post-Disaster Natural Gas 

Pipeline Risk Assessment 

Presenter: Zixiang Zhou 
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APPENDIX D: Workshop, Demonstrations, and Responses 
Mini-Workshop on Remote Sensing Technologies for Post-Disaster Risk Assessment of 

Natural Gas Pipeline Systems 

The U.S. Department of Transportation’s Pipeline and Hazardous Materials Safety Administration 

(PHMSA) requires operators of gas distribution pipelines to develop and implement a Distribution 

Integrity Management Program (DIMP) to identify and reduce pipeline risks. Specific regulations 

require evaluations of the effect of natural forces (e.g., landslides, erosion, flooding, earthquakes, 

and other environmental hazards) that could potentially influence the integrity of the pipeline. This 

workshop will look at the role of remote sensing technologies in post-disaster risk assessment of 

natural gas pipeline systems. In the workshop, we will share research findings from a project 

that is directed at exploring the integration of several remote-sensing technologies and developing 

dedicated data processing and decision support tools that would allow pipeline operators to monitor 

changes in the built environment (structures, terrain, etc.) adjacent to pipelines after a natural 

disaster and to allow operators to assess the potential for increased risk of failure. System demos 

will be conducted at the workshop. Part of the workshop will also be dedicated to discuss future 

technological and regulatory needs in building and maintaining resilient natural gas pipeline 

infrastructure systems.  

 
When: 9:00AM-1:00PM, June 22, 2016 

Where: Auditorium of CAIT Building, Rutgers University Busch Campus, 100 Brett Road, 

Piscataway, NJ, 08854 

Workshop Organizers:   

• Jie Gong, Ph.D., Assistant Professor 

Center for Advanced Infrastructure and Transportation 
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Department of Civil and Environmental Engineering 

Rutgers, The State University of New Jersey 

• Andrés Roda, P.E., Research Manager 

Center for Advanced Infrastructure and Transportation 

Rutgers, The State University of New Jersey 

• Khalid Farrag, Ph.D., P.E. 

Gas Technology Institute 
 

Workshop Schedule 

Mini-Workshop on Remote Sensing Technologies for Post-Disaster Risk 

Assessment of Natural Gas Pipeline Systems 

9:00 AM - 

9:20AM 

Coffee and Introductions 

9:20AM – 

9:30AM 

Welcome 

9:30AM – 

10:00AM 

Session 1: Introduction to Remote Sensing Technologies  

 

• Introduction to Research Project: Mobile Hybrid LiDAR & Infrared 

Sensing for Natural Gas Pipeline Monitoring 

• Remote Sensing Technologies 

10:00AM – 

10:30AM 

Session 2: Integration of Remote Sensing, GIS Technologies, and Risk Modeling 

for Post Disaster Damage Assessment 

 
• Damage Assessment Framework 

• Algorithms and Software Implementation 

10:30AM – 

10:45AM 

Break 

10:45AM – 

11:45PM 

Session 3: System and Software Demonstration 

 
• Technologies 

o Mobile LiDAR (outside CAIT) 
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o Infrared Thermography 

o Drone 

• Visualization and Software 

o Online LiDAR Data Visualization 

o Spatially Resolved Infrared Thermography 

o Damage Assessment Workflow 

o Microsoft Hololens 

11:45AM – 

12:15PM 

Session 4: Structured discussions on future  

12:15PM – 

1:00PM 

Working Lunch 

 

Attendee List 
 

NAME Company Note 

Andrew Sykes Pepco Confirmed, but did not attend due to outage 
break caused by a thunderstorm 

Carrie Berard NYSEG  

Colleen Richwall Taylor Wiseman & Taylor  

George Ragula PSE&G  

Jim Tarleton New Jersey Natural Gas  

Kamil Fryzowski PSE&G  

Maria Diaz New Jersey Natural Gas  

Mobeen Khan New Jersey Natural Gas  

Paula James Atlantic City Electric Confirmed, but did not attend due to outage 
break caused by a thunderstorm 

Phillip Galka NJBPU Confirmed, but did not attend due to outage 
break caused by a thunderstorm 

Steve Hope NYSEG  
Rick Trieste 

 
ConEdison 

  

Mary Holzmann 
 

Natiional Grid 
  

Ed. Kunz 
 

American Aerospace 
  

Khalid Farrag* 
 Gas Technology Institute Call in 

Ali Alavi* A & M Structural Solution Call in 
Caesar Singh* 

 USDOT Did not attend due to last minute conflict 
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Vasanth Ganesan* 
 USDOT Did not attend due to last minute conflict 

Jie Gong Rutgers CAIT  

Andres Roda Rutgers CAIT  

Patrick Szary Rutgers CAIT  

Brian Tobin Rutgers CAIT  

Yi Yu Rutgers CAIT  

Xuan Hu Rutgers CAIT  

Zixiang Zhou Rutgers CAIT  

Mengyang Guo Rutgers CAIT  

 

Workshop Summary: 

The workshop was a very successful event. The workshop attendees were particularly interested in 

the demonstration part. There were great questions and discussions regarding the role of remote 

sensing, in particular the lidar technology, in assessing the integrity of natural gas pipeline systems. 

Some particular interesting future research needs that were brought up by the workshop attendees 

include the ability of using remote sensing to determine the accessibility of critical valves after 

major disasters and the role of remote sensing in locating buried assets after major topological 

changes as the results of disaster impacts. Some workshop attendees are interested in deploying our 

systems in monitoring the threat posed by flood to natural gas pipeline systems that are close to 

rivers and lakes. Further discussion are ongoing with these companies. 
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APPENDIX E - Market Analysis of Leak Survey Sensors Used by the Natural gas Utilities  
 

Objective  

The objective of this work, part (a), of Task-7 is to provide an analysis of the current market of natural gas 

leak detection and survey devices, based on the performance of the various methane detection technologies 

that can be employed in walking and driveby for leak survey of natural gas pipelines. Part (b) of Task 7 

involves an analysis of the various risk assessment software used by the natural gas utilities and it will be 

presented in a following report.  A thorough literature review was conducted for determining the essential 

variables as they relate to specific equipment and site conditions for the evaluation of current and emerging 

leak survey technologies. A total of six leak detection approaches were reviewed. Vendor specifications 

and literature review of these technologies were collated and evaluated.  

Introduction  

Various new and existing methane leak survey technologies are being developed and enhanced by 

research and development organizations and manufacturers. The framework for the leak detection and 

classification procedures is presented in the GPTC guide (1).  

The ability to maximize the effectiveness of the leak survey process is critically important for distribution 

and transmission gas pipelines which are subject to the requirements of the Department of Transportation 

CFR codes §192.723 and the pipeline integrity management regulations.  

With methane detection sensitivities approaching levels at or below 1 ppm (part per million) and 

increasing specificity to target pipeline sources of methane, there currently exists significant interest by 

operators in determining which leak detection approaches provide the optimal capability in identifying 

pipeline leaks.  

Numerous leak survey devices currently exist in the market, each operating on different underlying 

detection technologies. These devices range from man-portable walking survey instruments such as the 

Flame-Ionization Detector (FID), the Portable Methane Detector (PMD), the Remote Methane Leak 

Detector (RMLD) and Infrared Spectroscopy (DP-IR); to bulkier devices more suitable for drive-by leak 

surveys such as the Optical 18 Methane Detector (OMD), and the Picarro sensor based on Cavity Ring-

Down Spectroscopy (CRDS). Note that the FID and DP-IR technologies are employed in both walking 

and drive-by surveys.  

Each of these devices and technologies, summarized in Table 1, are likely to entail a different set of 

essential variables for consideration and require specific test and assessment methods 
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1. Flame-Ionization Detectors (FID)  

The flame ionization detector (FID) is currently the most widely-used technology for walking leak-

detection surveys and it has been available since the 1960s. Although a considerable portion of the gas 

system is currently patrolled with mobile surveys, the majority of the system, especially service lines, is 

checked on foot and the FID technology still account for a sizeable portion of this market segment today. 

Due to the maturity level of this technology, a number of vendors manufacture FID units for use in 

methane leak-detection. Figure 1 show examples of these devices. 

 
Figure 1. Examples of Portable Flame Ionization Detectors 
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The FID device utilizes an internal gas cylinder containing a calibrated H2/N2 mixture. This gas, flowing 

at a metered rate, is mixed with a sample of atmospheric gas and ignited. By applying a voltage across the 

flame, it is possible to detect ions generated in the combustion process. The electrical current response is 

proportional to the organic concentration of the gas mixture. Hydrocarbon molecules exhibit a molar 

response factor equal to the number of carbon atoms contained. A positive detection is not necessarily 

specific to methane detection and ambiguity exists between a high methane concentration and a lower 

concentration of heavier hydrocarbons.  

While the FID is very accurate, it has several shortcomings, particularly associated with the maintenance 

and the need for hydrogen gas. The reference calibrated gas mixture must be replenished in the device. In 

addition, the unit is not intrinsically safe. It is a routine precaution that operators ignite the flame (startup 

the unit) in a noncombustible atmosphere prior to approaching and seeking potential methane leak sources 

2). FID instruments has been mounted to mobile platforms to perform drive-by leak surveys.  

Several vendors of this technology include Heath Consultants Inc. (2), Southern Cross (3), and Photovac 

(4).  

The key device parameters include the following:  

• Fuel & Calibration gas concentrations (Hydrocarbon impurities),  

• Mixture feed rate to flame (sample pump),  

• Sample pump and external tubing. 

The site-specific parameters include the following:  

• Ignite fuel (hot wire) in non-combustible atmosphere,  

• Needs to be inside leak plume,  

• Inaccurate above 1% methane by volume (10,000 ppm),  

• False positives can include sewer gas, car exhaust, gasoline, and atmospheric 

contaminants,  

• Special procedures are required for high altitude (>3,000 feet above sea level).  

General Comments on the devices:  

• 40-50 years old tech, most widely utilized in natural gas leak detection method,  

• Suitable for walking and drive-by surveys,  

• Total hydrocarbon detector,  
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• 1 – 10,000 ppm (up to 1% gas) detection range,  

• High accuracy.  

• Instrument weight is about 7 lbs.  

Advantages:  

• Cheap, rugged with highly linear response range from 1-10,000 ppm range (i.e., up to 

1% gas by volume),  

Disadvantages:  

• Significant maintenance cost,  

• Less specificity, it can’t distinguish between different organic substances such as CO 

or CO2.  

• Substantial device calibration and maintenance requirements (6), including 5-15 min. 

warm up time required post-ignition, lubricating O-ring on stem of cylinder valve 

once per week and replacing inlet filter prior to each use, and refueling and 

recharging. 

2. Optical Methane Detector (OMD)  

The OMD was developed by the Gas Research Institute (GRI), Carnegie-Melon Research Institute and 

Westinghouse Science & Technology Center, prior to being commercialized by its current vendor Heath 

Consultants. The device is shown on a survey vehicle in Figure 1.  

The OMD performs an optical detection of methane based upon this molecule’s absorption spectrum. A 

spectrally broad photodiode, mounted on one side of the vehicle’s front bumper, directs a beam of 

infrared light at an optical detector, mounted at the other end of the bumper. Methane present within the 

path between the light source and detector will act as a filter, absorbing IR photons only from the discrete 

quantized, and spectrally narrow, frequency regions corresponding to molecular excitation energies. The 

difference between emitted and received spectral content thus represents the integration of numerous 

methane absorption events along the light path. Careful instrument calibration permits accurate detections 

of line averaged methane concentrations down to the 1 ppm level.  
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Figure 2. Optical Methane Detector (OMD) mounted on survey vehicle, by Heath Consultants Inc. 

The Vendor specified measurement accuracies of ±10% can be obtained for methane concentrations in the 

range of 1 ppm – 100 ppm, and ±20% in the range of 100 ppm – 200 ppm. 

Vendor: Heath Consultants, Inc.  

Operating principle:  

• Absorption spectroscopy, utilize broad spectral source, 

• Filter photodiode to detect narrow spectral region containing substantial methane 

absorption features.  

The key device parameters include:  

• Device is mounted on vehicles, Sensitivity 1 ppm – 200 ppm, 10% accuracy,  

• Weight (external system 17 lbs.; power box 6 lbs.; internal display 3 lbs.; cables 4 

lbs.).  

• -22oF to 122oF operating temperatures General Comments:  

• Specific to methane,  

• Similar to RMLD but double-ended. 

3. Portable Methane Detector (PMD)  

The Portable Methane Detector (PMD) (Figure 3) was envisioned as walking survey instrument that 

combines both the high sensitivity capability of an FID with the high concentration (up to 100% methane) 

detection capabilities of a catalytic combustible gas indicator (CGI). The PMD draws a gas sample into an 

internal chamber much like an FID but instead of combusting the gas, employs an optical analysis 
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technique referred to as filtered infrared spectroscopy. The development of this technology, from concept 

through construction and testing of field prototypes was largely funded by GRI and OTD. There exist 

reports from extensive field testing comparing performance of prototype PMDs to FID readings in 

extensive field tests under a range of conditions. A total of four independent gas utilities participated in 

the field tests which concluded the PMD prototypes produced measurements consistent with FID 

instrument readings in virtually all scenarios. In one particular test, a failure of the PMD prototype to 

locate a weak methane leak (ppm level readings observed on the FID) was attributed to the presence of 

frost on the ground. Overall, independent evaluations determined this device to indeed be a viable 

alternative to FID in walking leak surveys. The above findings are summarized from the final OTD report 

(7).  

 
Figure 3. The Portable Methane Detector (PMD), by Sensit Technologies 

The PMD provides FID levels of accuracy and sensitivity, greatly enhancing specificity to methane 

detection, and extends the detection limit range to 100% methane atmospheres. Prior to the PMD, very 

high methane concentrations measurements in the field required CGI detectors.  

Vendors: Sensit Technologies (8):  

Operating principle:  

• Filtered Infrared Spectroscopy.  

Key Device Parameters:  

• Fast sensing , high sensitivity 1 ppm, and +/- 10% accuracy,  

• Detection range 0-100% gas (covers ranges of both FID & CGI devices),  

• Lower Explosive Limit (LEL) and tick style leak detecting mode  

• Data logging with event capture, GPS and Bluetooth options,  

• Weight 6.1 lbs., size 10” x 4.1” x 5.5”, 7 hr. operation,  
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• Continuous operation with Li-ion battery,  

• No moving parts,  

• Self-zeroing function, minimal calibration required (Smart-Cal). Site Specific 

Parameters:  

• Operating conditions: -4oF to 122oF,  

• Suitable for vehicle mounting or walking surveys,  

• Commercial unit available for walking surveys. 

Site Specific Parameters: 

• Operating conditions: -4oF to 122oF,  

• Suitable for vehicle mounting or walking surveys,  

• commercial unit available for walking surveys. 

4. Remote Methane Leak Detector (RMLD)  

The RMLD is an optical-detection based methane leak detector (Figure 4). Like the OMD, this device 

operates on the principle of looking for a signature spectral filtering of an emitted optical signal. Unlike 

the OMD, it employs a tunable laser source to emit coherent energy at a single frequency. The ability to 

modulate this frequency on and off resonance with a methane spectral line lends this approach its Tunable 

Laser Absorption Spectroscopy nomenclature. In addition, the device is single-ended. Both the detector 

and source are housed in a single hand-held head unit with an umbilical connection to a separate portable 

electronics box (2).  

 

 
Figure 4 - Remote Methane Leak Detector (RMLD), by Heath Consultants Inc. 
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A substantial advantage of this device over most other leak detectors presented in this report is its ability 

to obtain methane measurements from outside methane plumes. This effectively removes the operator and 

detector from a potentially dangerous environment and allows for detection at greater distances from the 

device, useful for examining system components that are difficult to access directly. While this improves 

operator safety, remote detection comes at a price. The first penalty is the requirement for an object to be 

located behind the plume, in the direct line of sight between the operator and the methane concentration to 

be detected.  

Vendors: Heath Consultants, Inc.  

• Key Device Parameters:  

• Sensitivity 5–10,000 ppm,  

• Typically 100 ft. maximum range to topologic target, with actual range dependent on 

scattering media (e.g. < 1 m for clear standing water vs. > 50 m for brick),  

• 5 second startup/self-test,  

• Can routinely measure absorption levels of 10-5 relative to the off-resonance baseline 

 Site Specific Parameters:  

• Transmits and captures reflected light,  

• Absence of surface behind or obstacle in-front of leak plume will prevent detection,  

• Max. 100 ft. standoff distance,  

• Ground based surveys have benefit of immediately marking leak location,  

• Wind speeds 0-50 mph,  

• Operation limited to -20 to +120oF.  

General Comments:  

• Developed by PSI and DOE/NYSEARCH,  

• Open path version of the OMD,  

• Background levels of ~2ppm integrate over path volume measured,  

• Suitable for walking and driving surveys. 

5. Infrared Spectroscopy (DP-IR)  

Figure 5 shows the Heath’s Detecto Pak-Infrared (DP-IR) unit. As per the vendor’s user manual, 

the DP-IR utilizes the Infrared Controlled Interference Polarization Spectrometry method for 
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methane gas detection (9). This technique entails applying a narrow band-pass periodic optical 

filter, matched to absorption spectra of gas being detected. 

 

 
Figure 5 - Infrared Controlled Interference Polarization Spectrometer DP-IR, Heath Consultants 

Inc. 

The instrument is intended to replace the current surveying equipment that relies on traditional 

Flame Ionization detection methods and eliminates the need for expensive gas cylinders and 

refill systems resulting in reduced instrument maintenance costs. No independent field condition 

tests were available in the public domain for this device. Vendors: Heath Consultants, Inc. (10).  

Key Device Parameters:  

• Methane specificity, fast measurements,  

• 1 ppm sensitivity, auto-ranges up through 100% methane,  

• Accuracy greater of either ±0.5% or ±10% of reading,  

• No moving parts,  

• Ease of operation,  

• Low maintenance (filter replacements),  

• 8-hour Li-Ion battery life (32oF),  

• Intrinsically safe, Safety Class 1 Division 1 Group D T31 ,  

• About 5 minutes warm-up time, 

• Internal calibration cell, self-test and zero functions, 

• Digital methane detection and tick sound modes for tracking back to source of leak,  
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• Internal data logging and Bluetooth connectivity. 

Site Specific Parameters:  

• Operates in wide temperature range (0 to 122oF),  

• Commercial unit available for walking surveys. 

6. Cavity Ring-Down Spectroscopy (CRDS)  

One of the new of detectors on the market today is the Picarro Surveyor for Natural Gas Leaks 

(Figure 6). This detector technology utilizes a highly sensitive optical detection scheme known 

as Cavity Ring-Down Spectroscopy (CRDS) and it is marketed toward gas utilities for the 

purpose of conducting fast mobile surveys. As per most of these optical detection methodologies, 

detections are highly specific to the target gas species being sought, and for this case to carbon-

12 and carbon-12 constituents of methane. An advantage of this particular technology is its 

ability to fingerprint isotopic ratios of methane. This allows for discrimination of trace pipeline 

methane leaks from higher background levels attributed to landfills. 

 

 
 

Figure 6 - CRDS analyzer and mobile kit, by Picarro 

The vendor-specified high sensitivity levels and detection speeds are attained by utilizing a high 

quality optical cavity. Thus a 200-mm (8 inch) long cavity can yield effective optical path-

lengths of many kilometers (11). A telecom grade coherent laser source is required to be tuned 

over the optical absorption feature of the targeted gas species of interest. The gas sample is 
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continuously drawn into the optical cavity, illuminated by the laser source and the level of 

optical leakage from the cavity monitored. Once a maximum intensity buildup is observed, the 

laser source is turned off and the time required to deplete the stored energy is measured. This 

decay time is referred to as the cavity ring-down time and is related to the optical loss of the gas 

molecules and the cavity mirrors. Vendors: Picarro Inc.  

Key Device Parameters:  

• Wavelength (~1.6 µm for methane),  

• Intra-cavity gas temperature and gas pressure,  

• Cavity sample exchange rate (about 1 second, impacts time between measurements at 

different locations),  

• Speed of vehicle up to 40 mph, as claimed by the vendor.  

Site Essential Variables:  

• Requires vehicle to drive through the gas plume to measure concentration of gas 

drawn inside the cavity,  

• Requires incorporating wind speed and direction,  

• Based on communication with the manufacturer, fingerprinting using isotope ratios 

uses 1 ppb precision from 3 ppm up to 16 ppm methane concentrations, isotopic ratio 

measurements get noisy outside this range.  

• The system is not suitable for concentrations above 20-45 ppm as per vendor, 

General Comments:  

• High sensitivity (1ppb)/high speed (1 Hz) methane leak detection technology,  

• Picarro Surveyor (vehicle mounted for fugitive emissions leak detection),  

• Suitable for driving or stationary surveys. Not suitable to walking surveys,  

• Detect and fingerprint methane emissions. 
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APPENDIX F- Current Risk Analysis Market for the Natural Gas Industry 
There are several risk analysis packages that are widely used in the natural gas risk analysis market. These 

packages include New Centruy SRA - Spatial Risk Analyst, Opvantek, and APGA SHRIMP.  

Spatial Risk Analyst 

Spatial Risk Analyst is a workflow-driven application that allows pipeline operators to quickly and 

objectively measure risk along a pipeline.  It leverages customized risk algorithms and an improved user 

interface to facilitate risk assessment and mitigation. 

Opvantek 

Opvantek is a comprehensive decision-support solution that enables gas operators to meet recently enacted 

federal Distribution Integrity requirements by enabling automated system-wide risk assessment and support 

for the prioritization of cost effective mitigation strategies. In essence, it integrates with relational and 

spatial (GIS) systems to collect and assimilate information associated with a gas operator’s distribution 

network. 

APGA SHRIMP 

SHRIMP is an online tool that operators of natural gas distribution systems use to create a complete, written 

DIMP plan customized for the specific needs of their system.  

Common Risk Assessment Approaches 

Scenario-based risk assessment is a commonly supported paradigm in these software packages. In scenario-

based risk assessment, the commonly used techniques are HAZOP technique, Fault Tree Analysis, Index 

Models, Muhlbauer’s risk assessment methodology, and Consequence model. The following provides a 

short overview of each of these techniques. 

HAZOP Technique 

A HAZOP analysis typically involves a detailed examination of pipeline system components to determine 

the outcome if a specific component does not function as it is designed to (within its normal parameters). 

Each parameter (e.g., pressure or flow rate) is examined to identify potential changes in the system that is 

based on changes in the component parameter. 

Fault Tree Analysis 

In the fault tree analysis, the sequence of events is traced backwards from a failure. This technique uses 

most probable or most severe pipeline failure scenarios. Based on these scenarios, resulting damages are 

estimated and mitigation responses and prevention strategies are developed. In the Fault tree analysis, 

factors such as natural disasters, human activity, and other externally induced caused can be included.  

Index Models 

The Index Models use customized algorithms such as Muhlbauer’s risk assessment methodology, 

Consequence Modeling, and the PipeView Risk model. In the Muhlbauer’s risk assessment methodology, 
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it is believed that data on pipeline failures are still insufficient to perform a thorough risk assessment using 

purely statistical concepts, and an assessment using probabilistic theory is not required because the 

probabilities used in these approaches are questionable. Instead, it argues that risk is defined by answering 

three questions: 

• What can go wrong (every possible failure must be identified)? 

• How likely is it to go wrong? 

• What are the consequences? 

In this approach, numerical values are assigned to conditions on the pipeline system that contribute to risk. 

The score, which reflects the importance of an item relative to other items, is determined from a 

combination of statistical failure data and operator experience. The other example is Consequence Model 

(C-FER Model). The C-FER model examines isometric thermal radiation distances to determine a burn 

radius and a 1 percent fatality radius from a natural gas pipeline break. An assumption of this model is that 

risk can be expressed as the product of failure probability and failure consequences, and reliability is the 

complement of failure probability. 
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ABSTRACT 

The timelines of the building damage assessment has become a critical concern in modern age of 

post-disaster assessment. Conventional approaches are labor intensive and time consuming. 

Meanwhile, the accessibility of damaged area restricts the investigators and engineers to a great 

extent. In this study, a multi-level airborne LiDAR-based damage assessment approach is 

proposed. The input data is classified at first, then the building clusters are extracted using a 

density-based algorithm. A novel cluster matching algorithm is proposed to robustly cluster 

clusters corresponding to same building together. Multiple features, including 1) roof area, 

volume, 2) roof orientation, and 3) roof shape, are computed as indicators of building damage 

condition. A hierarchical determination process is then employed to identify the damage 

category and damage level of each building. The result of experiment suggests that this approach 

is able to: 1) recognize building objects; 2) extract damage features; 3) identify damage category 

due to multiple damage patterns.  
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INTRODUCTION 

In the past decades, natural disasters have posed severe impacts to public safety. Billions of 

dollars of financial losses and thousands of injuries and death have been reported during the 

main catastrophes such as the 2008 earthquake at Wenchuan, China, 2010 earthquake at Haiti, 

2011 tsunami at Japan and 2012 hurricane at New Jersey, US. The limitation of accessibility of 

impact regions is one of the most challenging issues for rapid rescue and recovery. Conventional 

approaches rely on visual inspection, which are labor intensive and time consuming. Recent 

years, the fast growing remote sensing technologies have provided alternative solutions to this 

problem. Satellite imagery, unmanned aerial vehicle imagery and airborne LiDAR have been 

used in post-disaster assessment in many cases (Tralli, D. M., et al 2005, Li, M., et al 2008, Tsai, 

F., et al., 2010, Van Aardt, J. A., et al 2011). 

Generally, there are two types of post-disaster assessment routines, 1) using pre-event and 

post-event data, and 2) using post-event data only. For the regions with pre-event data, it is easier 

to conduct the damage assessment by comparing the pre-event data to the post-event data. 

Bovolo, F., et al (2012 November) used the high resolution SAR images to detect the building 

changes, and airborne LiDAR data is used for the same purpose in (Murakami, H., et al 1999). 

Although change detection is obtainable from the comparison between multi-temporal data, 

there are still limitations for current approaches. For image based approach, most of them are 

pixel-by-pixel based, and the change detection is implemented on a 2D basis (Huang, X., et al 

2014). Since the building change also occurs at height direction for certain scenarios, the stereo 

imagery is used to introduce the height information (Tian, J., et al 2014, Zeng, C., et al 2014). 

However, due to the low quality of DSMs from satellite images and erroneousness in detecting 

small size objects, a quantitative change damage assessment is still a challenge. Turner, D., et al 

(2012) and Sui, H., et al (2014) use a UAV based platform to conduct the change detection. 

Their approach employs numerous high resolution images and reconstructs the scene through a 

Structure from Motion algorithm. This approach has higher resolution and higher accuracy due 

to 3D spatial data is available, although, the image based reconstructed model typically needs to 

be scaled to real size and geo-registered. Meanwhile, the reconstruction of dense 3D model from 

high resolution images is a computationally expensive procedure, which makes it difficult for a 

large region reconstruction and damage assessment. 
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One advantage of airborne LiDAR based methods is that accurate spatial data is available. 

In addition, as for most airborne laser scanning (ALS) system, the data is integrated with a 

navigation system, which simplifies the geo-registration of multi-temporal LiDAR data. 

Although ALS based system has abovementioned advantages, current methods still have 

following limitations. For most of the researches, the change detection is conducted on a global 

basis. This means they detect whether a building is changed or not, however, they are unable to 

tell to what extent the change is. In addition, most of current change detection approaches focus 

on changes caused by urban development, rather than disaster damage. Due to the different 

change patterns between man-made change and disaster-caused change, the approach works for 

man-made induced scenario might not work for disaster induced scenario well. 

To address these issues, a novel multi-level post-disaster building damage assessment 

approach is proposed in this paper. This approach extracts building objects from both pre-event 

and post-event data, then the objects belonging to same building from multiple-temporal data 

sets are matched using a novel cluster matching algorithm. The damage level determination is 

then conducted using multiple indicators on a hierarchical basis. This process leverages the area 

and volume of building roof, roof orientation and roof shape to determine whether a building is 

damaged. And multiple damage patterns are obtained based on the extracted features and damage 

indicators. 

RELATED WORKS 

Numerous of studies have been conducted on building extraction, change detection and 

damage assessment using airborne LiDAR during the past decades. For the purpose of object 

recognition and building extraction, the surface smoothness, distance between points, and the 

height information of the point cloud are mainly used as features. A review of state-of-art 

techniques regarding to building extraction is conducted by Tomljenovic, I., et al (2015). Filin, 

S., & Pfeifer, N. (2006) proposed a segmentation algorithm based on neighborhood slope. Meng, 

X., et al (2009) used a morphological based filter to extract building objects from airborne 

LiDAR point cloud. When non-ground points are classified, the building objects are extracted 

according to the geometric features. Zhang, J., et al (2013) proposed a support vector machine 

(SVM) based classifying algorithm for object-based point cloud analysis. In their research, the 

point cloud is first clustered using region growing based segmentation, and the geometric 

features of each cluster are calculated. Finally, a SVM is used to classify the cluster into different 
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objects. The planar feature of the points is used to segment building objects in the work of (Lari, 

Z., & Habib, A. 2014). In their work, the PCA is used to obtain the geometry feature of the 

neighbor points. Once the features are computed, a clustering algorithm is used to segment the 

planar objects.  

Regarding to LiDAR-based building change detection, two different change patterns are 

considered. One pattern is man-made building change, which implies building change due to 

development of urban environment. Another is disaster-induced change. For man-made change, 

Murakami, H., et al (1999) used the DSM generated from airborne LiDAR data to detect the 

building changes. To improve the algorithm performance, an orthoimage is employed for the 

removal of errors and noise. Vögtle, T., & Steinle, E. (2004) proposed a method leveraging 

airborne LiDAR data for building change detection. The raw data is first segmented into multiple 

objects including ground object, building object, vegetation object and other objects. This is 

achieved through a region growing algorithm. The building change is then conducted via 

comparing the DSMs from multi-temporal data sets. A change detection of dense urban area 

using airborne LiDAR data is carried out by (Vu, T. T., et al 2004, September). In their research, 

two different flight data are registered and gridded. Then the comparison is conducted on the grid 

basis. The test shows a high automation during the entire procedure. An object based building 

change detection algorithm is proposed in (Pang, S., et al 2014). Similarly, the DSM data is used, 

but the change point is detected through a connected component analysis. This approach finds 

the changed objects if the smoothness between consecutive points is larger than a threshold. The 

damage type is then categorized into newly built, taller, demolished and lower. Teo, T. A., & 

Shih, T. Y. (2013) developed a framework for building change detection and change type 

determination. The proposed method first generates DSM data, and then various objects are 

segmented. This classifies the vegetation points, building points, and other objects. The change 

detection is carried out upon these objects so that the building-to-building and building-to-

vegetation/ground change is determined. 

For disaster-induced change, Labiak, R. C., et al (2011, May) presented an approach for 

building change detection and quantification. A height model is generated by subtracting a 

digital terrain model from the original point cloud. Within the processed data, line-based change 

detection is conducted, which detects change points using a slope threshold. The change degree 

at each direction is calculated through the slope between consecutive points by fixing the change 
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at other dimension. Kashani, A. G., & Graettinger, A. J (2015) proposed a land-based platform 

uses both terrestrial and mobile LiDAR to evaluate the wind-induced roof damage. Although this 

approach is able to determine the damage condition of building roof, it is restricted by the 

accessibility of impact area right after the disaster attack. Elberink, S. O., et al (2011) uses an 

airborne-based platform for building collapse detection. The building objects are extracted using 

a surface growing algorithm. A supervised learning approach is conducted levering multiple 

features including number of points per segment, mean height above DTM, unsegment to 

segment ratio, and planarity to inference the damage condition. Yonglin, S., et al (2010, June) 

also uses an airborne-based system to detect inclined buildings after earthquake attack. But their 

work mainly focuses on symmetric and partial symmetric roofs. Khoshelham, K., & Oude 

Elberink, S. J. (2012, May) investigated the dimensionality reduction in data training and 

classification of airborne LiDAR data. The result of experiment shows that the proposed 

approach is capable of identifying buildings between damage and intact. However, this is not 

sufficient because the damage severity plays critical role in post-disaster rescue and assessment. 

METHODOLOGY 

This paper presents a multi-level damage detection pipeline as shown in Figure 1. The 

pipeline first classifies the input data to extract the building objects. Then a clustering algorithm 

is applied to extract individual building clusters. A novel cluster matching algorithm is proposed 

then to match the clusters corresponding to the same building. Afterwards, four geometric 

attributes are computed, including the area and volume of roof, the roof orientation, and roof 

shape distribution. A multi-level damage detection process is then conducted, this classifies the 

damage into multiple damage patterns and also extracts the intact buildings. A detail discussion 

of each step is provided in following sections. 
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Figure 1. Proposed Framework 

1. Data Pre-Processing 

The first step of proposed approach is pre-processing the raw input data. This means a 

classification procedure that classifies the point cloud into different categories is conducted. 

What are interested afterward are the building objects. A good classification is obtainable for 

pre-disaster scenario, however, it is difficult to segment the building points out from non-

building points especially for post-disaster scenario. Because the damaged building components 

might be very close to vegetation or ground. In addition, a building might splits into multiple 

parts subject to natural disasters, which poses challenges to points clustering procedure. 

However, since the scope of this research is rapid building damage assessment, the mis-

clustering of building objects for post-disaster scenario does not affect the determination of 
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damage condition. This is because a building is most likely damaged if the roof part reaches 

close to ground. And a building is determined to be damaged if the roof splits. Numerous 

researches have been studied to filter the airborne LiDAR data such as (Meng, X et al., 2009, 

Zhang, K et al., 2003, Chen, Q et al., 2007, Hodgson, M et al., 2005, Meng, X, 2005). All of 

these approaches can be employed for the purpose of ground points filtering and vegetation 

removing. Since these are beyond the scope of this paper, the interested readers are referred to 

the above-cited papers for detailed discussion of the algorithmic conduction. 

2. Building Points Clustering 

Within the output of data pre-processing, which is the point cloud of building objects, a 

building clustering process is then implemented for the purpose of building model extraction. 

Since a cluster is a set of point cloud in which the distance between any pair of neighbor points 

{𝒑𝒑𝒊𝒊,𝒑𝒑𝒋𝒋|𝒑𝒑𝒊𝒊 ∈ 𝑷𝑷,𝒑𝒑𝒋𝒋 ∈ 𝑷𝑷} is less than a threshold. On the contrary, the distance between any pair of 

points {𝒑𝒑𝒊𝒊,𝒒𝒒𝒋𝒋|𝒑𝒑𝒊𝒊 ∈ 𝑷𝑷,𝒒𝒒𝒋𝒋 ∈ 𝑸𝑸} is larger than the threshold if they belong to different clusters. 

Although this concept is intuitive, it still has challenges in clustering building objects if the point 

cloud is in low density. Since the average distance between any pair of neighbor points increases 

with the decrease of point density, multiple clusters might be grouped as one if the cluster-to-

cluster distance (red dashed line in Figure 2 (a)) is similar or smaller to the distance between 

point pairs inside a same cluster (red solid line in Figure 2 (a)). The example in Figure 2 (a) 

shows such scenario that these two data clusters are grouped as one large cluster. To address this, 

a density-based (Ester, M et al., 1996, August) concept is adopted. In their paper, the algorithm 

starts from arbitrary point and clusters all the density-reachable points of this starting point. A 

modification of the algorithm is proposed in this research. Instead of starting from a point and 

finding all the density-reachable points of this point, the proposed algorithm simply finds all the 

points with K neighbor points within radius of 𝜀𝜀 as core points. Then a Euclidean-distance based 

clustering is employed to cluster these core points. In this step, the core points are grouped as 

one cluster if the distance between arbitrary pair of neighbor points is smaller than 𝜀𝜀. And those 

clusters with number of points less than a threshold n are removed because these clusters are 

most likely to be vegetation or noise points. The next step is checking whether the rest points 

belong to any clusters. To do this, every non-core points is visited and the neighbor points are 

found. If a neighbor point with distance smaller than 𝜀𝜀 is found and this neighbor point is a core 
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point, cluster this visited non-core point to the cluster of this core neighbor point. A pseudo code 

of the proposed algorithm is presented in Table 1. 

Table 1. Pseudo Code of Proposed Building Clustering Algorithm 

 Input parameters are: number of neighbor points K, search radius 𝜀𝜀, minimum number of 

core points for each cluster n 

 ---------------------------------------------Find the Core Points--------------------------------------

--------- 

1 FOR ( each point (𝒑𝒑𝑖𝑖 ∈ 𝑷𝑷, 𝑖𝑖 = 1,2, … ,𝑛𝑛)){ 

2   find the neighbor points (𝒑𝒑𝑘𝑘𝑖𝑖 ∈ 𝑷𝑷,𝑘𝑘 = 0,1, . . , 𝑙𝑙) within radius of 𝜀𝜀; 

3     IF (𝑙𝑙 > 𝐾𝐾){  label 𝒑𝒑𝑖𝑖 as core point;  } 

4     ELSE {  label 𝒑𝒑𝑖𝑖 as non-core point;  }  } 

 The original data is grouped into core points (𝒄𝒄𝑖𝑖 ∈ 𝑪𝑪) and non-core points (𝒄𝒄𝑗𝑗∗ ∈ 𝑪𝑪∗) 

 -------------------------------------------Cluster the Core Points-------------------------------------

--------- 

1 Create a Kd-tree for core points 𝑪𝑪 

2 FOR( each point (𝒄𝒄𝑖𝑖 ∈ 𝑪𝑪)}{ 

3   IF (𝒄𝒄𝑖𝑖 has not been visited) { 

4     create a new cluster 𝑪𝑪(𝐼𝐼) and put 𝒄𝒄𝑖𝑖 to this cluster; 

5     set 𝑪𝑪(𝐼𝐼).number(0) = 0, 𝑪𝑪(𝐼𝐼).number(1) = 1, and 𝑖𝑖 = 1; 

6     WHILE (𝑪𝑪(𝐼𝐼).number(𝑖𝑖) ≠ 𝑪𝑪(𝐼𝐼).number(𝑖𝑖 − 1) ) { 

7       FOR ( each point 𝒄𝒄𝑗𝑗+ ∈ 𝑪𝑪(𝐼𝐼)) { 

8         IF (𝒄𝒄𝑗𝑗+ has not been visited) { 

9           search the neighbor points (𝒄𝒄𝑘𝑘
𝑗𝑗+ ∈ 𝑪𝑪) within radius of 𝜀𝜀; 

10           IF ( 𝒄𝒄𝑘𝑘
𝑗𝑗+ has not been visited ) { put it to the cluster 𝑪𝑪(𝐼𝐼), 𝑖𝑖++;} 

         } 

       } 

     } 

   } 𝐼𝐼++; 

11   IF (𝑪𝑪(𝐼𝐼).number < n ){ remove 𝑪𝑪(𝐼𝐼);} 
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12   ELSE { keep 𝑪𝑪(𝐼𝐼); } 

 } 

 ----------------------------------------Cluster the Non-Core Points----------------------------------

--------- 

1 FOR ( each point (𝒄𝒄𝑗𝑗∗ ∈ 𝑪𝑪∗){ 

2   find its neighbor points (𝒄𝒄𝑘𝑘
𝑗𝑗∗ ∈ 𝑪𝑪) within radius of 𝜀𝜀; 

3   IF (found 𝒄𝒄𝑘𝑘
𝑗𝑗∗ and 𝒄𝒄𝑘𝑘

𝑗𝑗∗ ∈ 𝑪𝑪(𝐼𝐼)) { 

4     put 𝒄𝒄𝑗𝑗∗ to cluster 𝑪𝑪(𝐼𝐼); } 

 } 

 

3. Building Clusters Matching 

Since the damaged buildings are identified through comparison between pre- and post-

event data, the building matching is needed when the building clusters are obtained. A matching 

clusters means a pair of pre- and post-event clusters that corresponding to the same building. 

Intuitively, this is obtained by computing the distance between centroid points of each pre-event 

cluster to post-event clusters, and the matching clusters are the pair with shortest between-

centroid distance. This is a feasible approach, although, it still fails to match all the clusters that 

correspond to the same building if that building splits during the disaster. An illustration of this 

is shown in Figure 2 (b). If the blue region is the pre-event cluster, and the other regions are post-

event clusters. The shortest between-centroid distance will match the white region to the blue 

region. However, it is noticed that both green, black and white regions are the same building but 

splited due to collapse or damage, these should be matched to the blue region as well. One 

alternative solution to this is searching the clusters with centroids inside the search sphere. 

However, due to the irregularity of building roof shape, a robust searching radius is hard to 

determine, therefore the yellow region might be matched if the searching radius is chosen large. 
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Figure 2. Graphical Illustration of Clustering and Matching Algorithm 
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To overcome this, a novel cluster matching approach is proposed in this paper. Denote the 

pre-event cluster as reference cluster, and the post-event clusters as target clusters. To find the 

target clusters with centroids inside the region of reference cluster, triangulation of the reference 

cluster 𝑪𝑪𝑟𝑟 is performed (Lee, D. T., & Schachter, B. J. 1980) at first to compute its area 𝐴𝐴𝑟𝑟. A 

detailed discussion on computing the area of point cloud is presented in section 4. Then for each 

target cluster 𝑪𝑪𝑖𝑖𝑡𝑡 close to 𝑪𝑪𝑟𝑟, add its centroid 𝒄𝒄𝑖𝑖𝑡𝑡 to 𝑪𝑪𝑟𝑟 and construct the Delaunay triangles and 

compute the new area 𝐴𝐴𝑖𝑖. If 𝐴𝐴𝑖𝑖 =  𝐴𝐴𝑟𝑟, this centroid point 𝒄𝒄𝑡𝑡𝑖𝑖  is inside the region of cluster 𝑪𝑪𝑟𝑟, and 

match this cluster 𝑪𝑪𝑖𝑖𝑡𝑡 to 𝑪𝑪𝑟𝑟, otherwise, do not match it. This is because if the added point is 

inside one of the Delaunay triangle, it will not increase the area of that triangle, but only meshes 

that triangle into three small triangles (vertex D in Figure 2 (c)). On contrary, an added point will 

increase the area of Delaunay triangle by adding a new triangle to it, if this point is outside the 

range of this Delaunay triangle (vertex E in Figure 2 (c)).  

This algorithm is robust in finding all the in-region centroid points of target clusters. 

However, it is noticed that clusters partially overlap the region of reference cluster might be 

matched, if their centroid points are located near the boundary of reference cluster region. For 

example, in Figure 2 (d), the centroid point of green region is inside the region of blue cluster but 

very close to its boundary. As result half of the target region is outside the reference region. It is 

controversial to either match this target cluster or not since this cluster could be either a part of 

the same cluster or not. However, it is considered as a matching cluster in this paper and 

indicating building damage for the following reason: 

1) If this cluster is a part of the same building, this indicates that the building is damaged 

because it splits. And therefore this cluster is matched; 

2) If this cluster is not a part of the same building, but vegetation or part of other building, 

which also indicates that the building is damaged. Unlike the possible damage pattern 

discussed above, the damage of this building is caused by physical collision between 

buildings. 

4. Area and Volume Computing 

In this research, the area of a building is represented by the area of the footprint of its roof. 

Therefore, the point cloud in 3-D spatial coordinate is projected onto horizontal plane by 

assigning the Z-coordinate a constant value. Computing the area of a point cloud is a challenging 
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problem. The convex hull (Graham, R. L. 1972) is an effective algorithm for computing the area 

of a point sets with a convex shape, but it tends to enlarge the area of a point set if the shape is 

concave. For this reason, the area of a point set is computed as the summation of Delaunay 

triangles of this point set. Since Delaunay triangulation meshes the point set so that no point is 

inside any of the triangles, the triangulation covers the entire region of point set, and therefore 

the empty region is filled if the point set is in concave shape. In Figure 3 (a), the triangles 

enclosed by green lines are those that fill the empty region. Apparently, these triangles increase 

the summation of the area largely, and need be removed from computing the area. For each 

Delaunay triangle 𝐷𝐷𝐷𝐷𝑖𝑖, denote its three vertexes and three edges as 

{𝑽𝑽𝑖𝑖𝐴𝐴,𝑽𝑽𝑖𝑖𝐵𝐵,𝑽𝑽𝑖𝑖𝐶𝐶 ,𝑳𝑳𝑖𝑖𝐴𝐴𝐴𝐴,𝑳𝑳𝑖𝑖𝐴𝐴𝐴𝐴 ,𝑳𝑳𝑖𝑖𝐵𝐵𝐵𝐵 , 𝑖𝑖 = 1,2, … ,𝑚𝑚}, where 𝑽𝑽 stands for vertex and 𝑳𝑳 stands for edge. 

Label the triangle as unwanted triangle, ℒ(𝐷𝐷𝐷𝐷𝑖𝑖) = 0, if the length of one of its three edges is 

larger than a threshold 𝐿𝐿0, otherwise, label it as a wanted triangle ℒ(𝐷𝐷𝐷𝐷𝑖𝑖) = 1. Looping through 

every triangle and repeating this procedure give a refined Delaunay triangulation of the point set 

𝑷𝑷 (Figure 3 (b)). Then the area of this point set is computed as Eqn (1), 

𝐴𝐴 = ∑ [ℒ(𝐷𝐷𝐷𝐷𝑖𝑖) 𝐴𝐴𝑖𝑖]𝑚𝑚
𝑖𝑖=1     (1) 

where 𝐴𝐴𝑖𝑖 is the area of triangle 𝑖𝑖.  

For the purpose of matching building clusters, the area of reference cluster added with the 

centroid point of target cluster need be computed. However, the abovementioned approach is not 

applicable because it removes all the triangles with edges longer than a threshold. And if the 

added point is outside the region of reference, it will not increase the total area because all the 

triangles sharing this point are removed if this point is far away to the reference cluster. To 

address this, a modification to abovementioned approach is made. For this scenario, the triangles 

with edges longer than a threshold are still labeled as unwanted ℒ(𝐷𝐷𝐷𝐷𝑖𝑖) = 0, but those triangles 

sharing the added centroid point are labeled as wanted ℒ(𝐷𝐷𝐷𝐷𝑖𝑖) = 1 no matter how long their 

edges are. As shown in Figure 3 (c), this will ensure that the area increased if the added point is 

outside the region of reference cluster. 

For volume computing, one intuitive solution is multiplying the height of each triangle to 

its area. Since the spatial geometry needs be considered for the purpose of volume computing, 

the point cloud is no longer projected onto horizontal plane, and therefore the triangles are 

constructed in 3-D coordinate system. In many cases, it is hard to estimate the height of a 

building solely from the roof data because the anisotropy of the ground slopes. However, since 
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the eaves are mostly horizontal, these can be employed as base level in estimating the roof 

height. For each matching building clusters, the base level height is chosen as the height of the 

lowest eave. For simplicity, the height of each 3-D Delaunay triangle, ℎ𝑖𝑖, is computed from the 

base level to the height of its geometric center, and the area of each 3-D triangle is still computed 

as its projected area, 𝐴𝐴𝑖𝑖. The volume of roof is therefore computed as the Eqn (2). 

𝑉𝑉 = ∑ [ℒ(𝐷𝐷𝐷𝐷𝑖𝑖)𝐴𝐴𝑖𝑖ℎ𝑖𝑖]𝑚𝑚
𝑖𝑖=1     (2) 

 

Figure 3. Graphical Illustration of Area and Volume Computing 

5. Similarity Measurement of Cloud Orientations 

Although the area and volume of building roof play an important role in damage 

identification, they are insufficient for the case when the building splits into parts or inclined or 
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rotated but keeps the footprint area and roof volume unchanged. In these scenarios, the 

orientation of building roof changes, and this can be utilized as an indicator of damage. To 

identify whether a building is damaged due to splitting, roof inclination or roof rotation, the 

similarity of its principal components (PCA) is used. Since PCA reduces the dimensionality of 

data into a set of linearly uncorrelated components, and each eigenvector of the covariance 

matrix corresponds to a direction with maximum data variation. Denote each point as 𝒑𝒑𝑖𝑖 =

{𝑝𝑝𝑖𝑖𝑥𝑥,𝑝𝑝𝑖𝑖
𝑦𝑦,𝑝𝑝𝑖𝑖𝑧𝑧}, and the mean value among x, y, and z directions as 𝒑𝒑� = {𝑝̅𝑝𝑥𝑥, 𝑝̅𝑝𝑦𝑦, 𝑝̅𝑝𝑧𝑧}. Then its 

covariance matrix is computed as Eqn (3). 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 1
𝑁𝑁
∑ �(𝒑𝒑𝑖𝑖 −  𝒑𝒑�) ∙ �𝒑𝒑𝑗𝑗 −  𝒑𝒑���𝑁𝑁
𝑘𝑘=1   (3) 

Denotes its eigenvalues as 𝜆𝜆1 > 𝜆𝜆2 > 𝜆𝜆3, and the corresponding eigenvectors as 𝑽𝑽1,𝑽𝑽2,𝑽𝑽3 

then 𝑉𝑉1 corresponds to the component with maximum data variation, and 𝑉𝑉3 corresponds to that 

with minimum data variation, and {𝑽𝑽1,𝑽𝑽2,𝑽𝑽3} is an orthogonal space of the original data space. 

Since for most buildings, the dimension of roofs at horizontal directions are larger than that at 

vertical direction, 𝑽𝑽3 is therefore assumed as the axis pointing at vertical direction, and 𝑽𝑽1, 𝑽𝑽2 

are the vectors at the horizontal plane. If the orientation of buildings keep unchanged, the 

similarity between the principal components is large, otherwise it is small (Figure 4). The 

similarity is herein expressed by the absolute value of the inner product of two corresponding 

eigenvectors (Eqn (4)). If the eigenvectors are normalized, the similarity ranges from {0,1}.  

𝑆𝑆𝑖𝑖 = 〈𝑽𝑽𝑖𝑖𝑟𝑟 ,𝑽𝑽𝑖𝑖𝑡𝑡〉,   𝑖𝑖 = 1,2,3    (4) 

 

Figure 4. Similarity Measurement of Cloud Orientations 



 

56 
 

Since all the eigenvectors are normalized, the similarity computed in Eqn (4) is equivalent 

to the cosine angle of the corresponding pair of eigenvectors (Eqn (5)). Intuitively, the change of 

roof orientation can be represented by the rotation angle, 𝜃𝜃𝑖𝑖
𝑟𝑟,𝑡𝑡, between corresponding 

eigenvectors. 

cos 𝜃𝜃𝑖𝑖
𝑟𝑟,𝑡𝑡 = 〈𝑽𝑽𝑖𝑖

𝑟𝑟,𝑽𝑽𝑖𝑖
𝑡𝑡〉

�𝑽𝑽𝑖𝑖
𝑟𝑟��𝑽𝑽𝑖𝑖

𝑡𝑡�
= 〈𝑽𝑽𝑖𝑖𝑟𝑟 ,𝑽𝑽𝑖𝑖𝑡𝑡〉 = 𝑆𝑆𝑖𝑖   (5) 

6. Similarity Measurement of Shape Distribution 

In addition to the orientation, shape distribution proposed by (Osada, R et al., 2002) is also 

used for the purpose of damage identification. In Osada’s paper, the shape signature of a point 

cloud is represented as a probability distribution of specified geometric properties. In this paper, 

the following geometric properties are selected:  

1) the distance between arbitrary pair of points in point cloud, denoted as 𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝; 

2) the square root of the area of the triangle between three arbitrary points in point cloud, 

denoted as 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡; 

3) the cubic root of the volume of the tetrahedron between four arbitrary points in point 

cloud, denoted as 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

For each point cluster, 1000 point sets are randomly selected to construct the corresponding 

distribution histogram. For the simplicity of computation, the bin width of each histogram is 

predefined to ensure that each histogram covers at least 100 bins. 𝜒𝜒2 Statistics is used herein to 

compute the similarity between histograms, where 𝜒𝜒2 Statistics is expressed as Eqn (6). 

𝜒𝜒2 = ∑ (ℎ𝑖𝑖−𝑔𝑔𝑖𝑖)2

ℎ𝑖𝑖+𝑔𝑔𝑖𝑖
𝑛𝑛
𝑖𝑖=1    (6) 

where ℎ𝑖𝑖 and 𝑔𝑔𝑖𝑖 are two different histograms. And n is the maximum number of bins of two 

histograms.  

Since the variety of the building roof shape, it is difficult to identify damage buildings by 

simply comparing the 𝜒𝜒2 statistics to a threshold, but need to compare the 𝜒𝜒2 statistics with 

ground truth. Due to the lack of ground truth data set, it is hypothesized in this research that the 

similarity between the histograms of the same reference data is equivalent to the ground truth. 

For each iteration, randomly select 1000 sets of points from reference cluster 𝑪𝑪𝑟𝑟 and construct 

the corresponding histograms. Due to random selection, the selected point set at iteration i is 
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different from that at iteration j. This makes the selected point clouds slightly different among 

iterations, and therefore could be used to compute the ground truth 𝜒𝜒𝑔𝑔2 statistics. The pseudo code 

of computing ground truth 𝜒𝜒𝑔𝑔2  is given in Table 2. 

Table 2. Pseudo Code of Proposed Ground Truth 𝛘𝛘𝐠𝐠𝟐𝟐 Computation 

1 FOR (reference cluster 𝑪𝑪𝑖𝑖𝑟𝑟) { 

2   FOR (iteration  j) { 

3 randomly select 2 sets of points {𝒑𝒑𝑖𝑖,1,𝒑𝒑𝑖𝑖,2, 𝑗𝑗 = 1,2, … ,1000}, each point set contains 

four     

randomly selected points 𝒑𝒑𝑗𝑗,1{𝒑𝒑𝑗𝑗,1
1 ,𝒑𝒑𝑗𝑗,1

2 ,𝒑𝒑𝑗𝑗,1
3 ,𝒑𝒑𝑗𝑗,1

4 }, 𝒑𝒑𝑗𝑗,2{𝒑𝒑𝑗𝑗,2
1 ,𝒑𝒑𝑗𝑗,2

2 ,𝒑𝒑𝑗𝑗,2
3 ,𝒑𝒑𝑗𝑗,2

4 }; 

4     construct the histogram ℎ𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝,1 using {𝒑𝒑𝑗𝑗,1
1 ,𝒑𝒑𝑗𝑗,1

2 } and ℎ𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝,2 using {𝒑𝒑𝑗𝑗,2
1 ,𝒑𝒑𝑗𝑗,2

2 };  

5     construct the histogram ℎ𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡,1 using {𝒑𝒑𝑗𝑗,1
1 ,𝒑𝒑𝑗𝑗,1

2 ,𝒑𝒑𝑗𝑗,1
3 } and ℎ𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡,2 using {𝒑𝒑𝑗𝑗,2

1 ,𝒑𝒑𝑗𝑗,2
2 ,𝒑𝒑𝑗𝑗,2

3 }; 

6 construct the histogram ℎ𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,1 using {𝒑𝒑𝑗𝑗,1
1 ,𝒑𝒑𝑗𝑗,1

2 ,𝒑𝒑𝑗𝑗,1
3 ,𝒑𝒑𝑗𝑗,1

4 } and ℎ𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2 using  

{𝒑𝒑𝑗𝑗,2
1 ,𝒑𝒑𝑗𝑗,2

2 ,𝒑𝒑𝑗𝑗,2
3 ,𝒑𝒑𝑗𝑗,2

4 }; 

7     compute the statistics 𝜒𝜒𝑗𝑗,𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝
2  of ℎ𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝,1 and ℎ𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝,2; 

8     compute the statistics 𝜒𝜒𝑗𝑗,𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡
2  of ℎ𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡,1 and ℎ𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡,2; 

9     compute the statistics 𝜒𝜒𝑗𝑗,𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  of ℎ𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,1 and ℎ𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2; 

   } 

10   find the maximum 𝜒𝜒𝑗𝑗,𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝
2 , 𝜒𝜒𝑗𝑗,𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡

2 , and 𝜒𝜒𝑗𝑗,𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  as ground truth of 𝑪𝑪𝑖𝑖𝑟𝑟; 

 } 

7. Damage Category Determination 

Within the damage indicators computed above, a multi-level damage determination process 

is conducted. For the area and volume, the ratio of target (post-event) clusters to reference (pre-

event) cluster is computed as 𝑟𝑟𝐴𝐴 = 𝐴𝐴𝑡𝑡 𝐴𝐴𝑟𝑟⁄  and 𝑟𝑟𝑉𝑉 = 𝑉𝑉𝑡𝑡 𝑉𝑉𝑟𝑟⁄ . These ratios are then grouped to 

multiple categories. The map from each ratio value to corresponding category is presented in 

Table 3. 

Table 3. Categories of Ratios and Similarity 

Area ratio, 𝑟𝑟𝐴𝐴 Volume ratio, 𝑟𝑟𝑉𝑉 Category 
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𝑟𝑟𝐴𝐴 ∈ [1.1, +∞) 𝑟𝑟𝑉𝑉 ∈ [1.1, +∞) 0 

𝑟𝑟𝐴𝐴 ∈ [0.9, 1.1) 𝑟𝑟𝑉𝑉 ∈ [0.9, 1.1) 1 

𝑟𝑟𝐴𝐴 ∈ [0.8, 0.9) 𝑟𝑟𝑉𝑉 ∈ [0.8, 0.9) 2 

𝑟𝑟𝐴𝐴 ∈ [0.7, 0.8) 𝑟𝑟𝑉𝑉 ∈ [0.7, 0.8) 3 

𝑟𝑟𝐴𝐴 ∈ [0.6, 0.7) 𝑟𝑟𝑉𝑉 ∈ [0.6, 0.7) 4 

𝑟𝑟𝐴𝐴 ∈ [0.5, 0.6) 𝑟𝑟𝑉𝑉 ∈ [0.5, 0.6) 5 

𝑟𝑟𝐴𝐴 ∈ [0.4, 0.5) 𝑟𝑟𝑉𝑉 ∈ [0.4, 0.5) 6 

𝑟𝑟𝐴𝐴 ∈ [0.3, 0.4) 𝑟𝑟𝑉𝑉 ∈ [0.3, 0.4) 7 

𝑟𝑟𝐴𝐴 ∈ [0.2, 0.3) 𝑟𝑟𝑉𝑉 ∈ [0.2, 0.3) 8 

𝑟𝑟𝐴𝐴 ∈ [0.1, 0.2) 𝑟𝑟𝑉𝑉 ∈ [0.1, 0.2) 9 

𝑟𝑟𝐴𝐴 ∈ [0.0, 0.1) 𝑟𝑟𝑉𝑉 ∈ [0.0, 0.1) 10 

For area ratio, only the building with level 1 category is considered as intact candidate, 

while the building with level 2 to 10 are treated as damaged due to area loss, and the buildings 

with level 0 is assumed to be damaged due to collision with other buildings or mismatching of 

vegetation. For volume ratio, the buildings with level 0 to 3 are treated as intact candidate. This 

is because the airborne LiDAR data might contain some wall points, and therefore the volume 

will increase, resulting the change of volume change.  

The building damage is also identified from the change of roof orientation. In this paper, 

the change categories are grouped based on the angles of corresponding eigenvectors and defined 

as follow, a graphical illustration of each scenario is given in Figure 5: 

1) the roof rotates around eigenvector 𝑽𝑽𝑖𝑖 if only one of 𝜃𝜃𝑖𝑖
𝑟𝑟,𝑡𝑡 is less than a threshold value 

𝜃𝜃0 and other two angles are larger than 𝜃𝜃0. This can be divided into two subcases: 

a. if 𝑽𝑽𝑖𝑖 corresponds to 𝜆𝜆3, the roof remains horizontal and rotates around vertical 

direction; 

b. if 𝑽𝑽𝑖𝑖 corresponds to 𝜆𝜆1 or 𝜆𝜆2, the roof rotates around the horizontal plane. 

2) the roof rotates around three eigenvectors if all the 𝜃𝜃𝑖𝑖
𝑟𝑟,𝑡𝑡 are larger than threshold 𝜃𝜃0. 

3) the roof remains the same orientation if all the 𝜃𝜃𝑖𝑖
𝑟𝑟,𝑡𝑡 are smaller than 𝜃𝜃0. 
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Figure 5. Damage due to Change of Roof Orientation 

In addition, the 𝜒𝜒2 value between histograms is capable of identifying building damage 

condition. For each matching clusters, if 𝜒𝜒𝑙𝑙2 < 𝜒𝜒𝑔𝑔,𝑙𝑙
2 , set  𝜒𝜒𝑙𝑙2 = 𝜒𝜒𝑔𝑔,𝑙𝑙

2 , where 𝑙𝑙 ∈

{𝐷𝐷𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝,𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡,𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}, and subscript 𝑔𝑔 stands for ground truth. Then denote two vectors 𝜲𝜲 =

{𝜒𝜒𝑙𝑙2},𝜲𝜲𝑔𝑔 = {𝜒𝜒𝑔𝑔,𝑙𝑙
2 } for each matching clusters, and denote 𝑟𝑟𝑙𝑙

𝜒𝜒2 as the ratio of 𝜒𝜒𝑙𝑙2 to 𝜒𝜒𝑔𝑔,𝑙𝑙
2 . If the 

clusters are perfectly matched, 𝑟𝑟𝑙𝑙
𝜒𝜒2 = 1, otherwise, 𝑟𝑟𝑙𝑙

𝜒𝜒2 > 1. Considering the noise and 

vegetation points might be clustered as building points, which will increase the 𝜒𝜒𝑙𝑙2 slightly, a 

buffer value 𝜉𝜉 is introduced to address this issue. Therefore, a building is determined as damaged 

if the maximum ratio of  𝑟𝑟𝑙𝑙
𝜒𝜒2 is larger than the threshold, 1 + 𝜉𝜉, otherwise, the building is 

determined as non-damaged. 

By defining three indicator functions 

ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = �10 if 𝑟𝑟𝐴𝐴 ∈ [0.9,1.1), 𝑟𝑟𝑉𝑉 ∈ [0.7, +∞ )
otherwise
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𝒥𝒥(𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡) = �10   if𝑚𝑚𝑚𝑚𝑚𝑚�𝜃𝜃𝑙𝑙

𝑟𝑟,𝑡𝑡� < 𝜃𝜃0
otherwise

 

𝒦𝒦(𝑟𝑟𝑙𝑙
𝜒𝜒2) = �10  if𝑚𝑚𝑚𝑚𝑚𝑚 �𝑟𝑟𝑙𝑙

𝜒𝜒2� < 1 + 𝜉𝜉
otherwise

 

and defining the following damage categories: 𝐷𝐷𝐷𝐷0 as non-damage, 𝐷𝐷𝐷𝐷1 as damage due to loss of 

area or volume, 𝐷𝐷𝐷𝐷2 as damage due to change of roof orientation, 𝐷𝐷𝐷𝐷3 as damage due to change 

of roof shape. The building damage condition is determined by following rules: 

1) if ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 1, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 1, and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 1, the building is determined as 𝐷𝐷𝐷𝐷0.  

2) if ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 0, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 1 and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 1, the building is determined as 𝐷𝐷𝐷𝐷1. 

3) if ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 1, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 0 and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 1, the building is determined as 𝐷𝐷𝐷𝐷2. 

4) if ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 1, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 1 and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 0, the building is determined as𝐷𝐷𝐷𝐷3. 

5) if ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 0, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 0 and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 1, the building damage is determined as 

𝐷𝐷𝐷𝐷1. 

6) if  ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 0, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 1 and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 0, the building damage is determined as 

𝐷𝐷𝐷𝐷1. 

7) if ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 1, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 0 and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 0, the building damage is determined as 

𝐷𝐷𝐷𝐷2. 

8) if ℐ(𝑟𝑟𝐴𝐴, 𝑟𝑟𝑉𝑉) = 0, 𝒥𝒥�𝜃𝜃𝑙𝑙
𝑟𝑟,𝑡𝑡� = 0 and 𝒦𝒦�𝑟𝑟𝑙𝑙

𝜒𝜒2� = 0, the building damage is determined as 

𝐷𝐷𝐷𝐷1. 

These eight rules imply an order of priority among the damage indicators as 

Area/Volume > Orientation > Shape. This is based on the assumption that the density of point 

cloud and outliers affect the accuracy of orientation and shape more severe than area and 

volume. As shown in Figure 6, the footprint of Delaunay triangles are very similar between high 

density point cloud (Figure 6 (a)) and low density point cloud with outliers (Figure 6 (b)). While 

the orientation of point cloud changes with the change of point density and the occurrence of 

outliers. The same scenario happens to the 𝜒𝜒2 value of shape distribution. Therefore, the area and 
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volume computed from triangulation meshes are more robust against the varying of density and 

outliers than orientation and shape distribution. 
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Figure 6. Affects of Point Density and Outliers 
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EXPERIMENT AND RESULTS 

A test is conducted using the data collected at Seaside Heights, pre- and post- hurricane 

Sandy. The data is was collected from an airborne LiDAR system and the area of the region was 

1550(meter) × 140(meter). After the data pre-processing, the ground data and vegetation data 

are removed, the building data is remained as shown in Figure 7 (a), where the left strip is the 

pre-event data, and the right strip is the post-event data.  

1. Result of Data Clustering 

Due to the difference of point density (Figure 7 (b)), for this case, the point density of post-

event is lower than that of pre-event data, different clustering parameters are used. For clustering 

the pre-event data, the two parameters are chosen as 𝐾𝐾 = 3, 𝜀𝜀 = 1, and for post-event data, they 

are chosen as 𝐾𝐾 = 3, 𝜀𝜀 = 1.5. For the results, each data cluster is assigned with a label, and a 

color map of clustering is shown in Figure 7 (c). As the result, 2074 clusters are obtained from 

pre-event data, and 5707 clusters are extracted from post-event data, this is partially because the 

point density of post- data is much lower. In addition, the number of post- cluster is more than 

that of pre-cluster is because some buildings damaged or splited during the hurricane. 
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Figure 7. Result of Data Clustering 

2. Result of Cluster Matching 

In section 3 of Methodology, the authors proposed a novel cluster matching approach, 

which can robustly match splited clusters corresponding to the same building together. For what 

is shown in Figure 8 (a), the red points represent the one building cluster of pre-event data, and 

the red polygon is the footprint of this data cluster. In Figure 8 (b), the red asterisk is the centroid 

of this cluster, and the asterisks in other colors are the centroids of nearby post- clusters. It is 

noticed that these post- centroids are all within the region of pre- cluster, and therefore they are 

all matched with this pre- cluster. Although it is observed in Figure 8 (c) that part of the points 

from clusters colored in yellow and black are outside of the region of reference cluster, they are 

still considered as matching clusters, and are grouped as one cluster corresponding to the 

reference cluster. 
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Figure 8. Result of Cluster Matching 

3. Damage due to Change of Area or Volume 

By computing the area and volume of each pair of matching clusters, the change ratio of 

area and volume are obtained.  For the test data, the threshold value of triangle edge length 𝐿𝐿0 

are chosen as 1.2192𝑚𝑚 for pre-event data and 2.4384𝑚𝑚 for post-event data. Figure 9 (a), (b) 

show the histograms of damage level determined from change ratio of area and volume. It is 

noticed from the figure that only 300 buildings are not damaged determined from the change of 

roof area, and approximately 1400 buildings are not damaged from the change of volume. From 

the union of rules 2, 5, 6, and 8, the number of damaged buildings due to loss of roof area or 

volume is 1763, which counts 85% of the total buildings in the test area.  
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Figure 9. Damage Level Determined  

4. Damage due to Change Roof orientation 

Figure 9 (c) shows the damage level determined from the orientation of roof, where the 

threshold value of 𝜃𝜃0 is set as 10°. It is noticed from the figure that most of the buildings have 

the issue of roof tilting and inclination, while only a few buildings, less than 100, have the issue 

of roof horizontal rotation. From rule 3, 5, 7 and rule 8, it is determined that the total number of 

damaged buildings due to change of roof orientation is 1575, which counts 75.9% of the total 

buildings.  

5. Damage due to Change of Roof Shape 

The damage determined from the change of roof shape is presented in Figure 8 (d). The 

threshold value, 𝜉𝜉, is chosen as 0.2 for this test data set. It is found that this damage indicator 

tends to categorize more buildings as damaged than other indicators. Based on the rule 4, 6, 7 
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and 8, around 90% of the buildings are determined as damaged, which is 1880 buildings in 

detail.  

6. Final Damage Pattern 

It is noticed from previous result that one single building might have multiple damage 

patterns and the priority of each damage pattern, according to the 8 rules proposed in section 7, is 

sorted in the order of Area/Volume >  Orientation > Shape. For example, for the building 

shown in Figure 10 (a), the damage pattern is obviously categorized as loss of area or volume. 

Although one of the shape indicator, 𝜒𝜒𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 = 1.463786, exceeds the threshold value, the 

damage pattern of this building is still categorized as 𝐷𝐷𝐷𝐷1. The building presented in Figure 10 

(b), (c) is a good example of 𝐷𝐷𝐷𝐷2 damage. The ratio of area and volume for this building are 𝑟𝑟𝐴𝐴 =

1.02435 and 𝑟𝑟𝑉𝑉 = 1.62314, which implies no damage due to area or volume change. However, 

it is obvious that the roof rotates around the vertical axis. The damage category is therefore 

determined as 𝐷𝐷𝐷𝐷2 due to the higher priority of orientation indicator, though its 𝜒𝜒𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  exceeds 

the threshold. Figure 10 (d) (e) and (f) show the case of 𝐷𝐷𝐷𝐷3. The change ratio of this building 

are 𝑟𝑟𝐴𝐴 = 0.908 and 𝑟𝑟𝑉𝑉 = 0.9312, respectively, and the angles between corresponding 

eigenvectors are 𝜃𝜃1
𝑟𝑟,𝑡𝑡 = 3.3814°𝜃𝜃2

𝑟𝑟,𝑡𝑡 = 4.0238°, and 𝜃𝜃3
𝑟𝑟,𝑡𝑡 = 2.2805°. Although these indicate no 

damage caused by change of area/ volume or orientation, the shape indicator, 𝜒𝜒𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 = 1.6915 

still suggests that the building has the issue of roof shape change. An visual inspection of Figure 

10 (f) gives that the post-event roof points are slightly higher than that of pre-event, and the 

points jump up dramatically from the pre-event data at some local position, which implies partial 

roof tilting. 
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Figure 10. Multiple-Level Change Determination 
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Figure 11. Color Map of Damage Classification 

Figure 11 shows the color damage map of test data. It is observed from the figure that the 

buildings located at south part are mainly damaged due to change of area or volume, while the 

buildings at north part are mainly damaged due to change of roof orientation. Due to the affect of 

low point density of post-event airborne data, the damage condition tends to be amplified. This is 

because the building might be mis-determined as  𝐷𝐷𝐷𝐷1 if some part of the roof data is not 

collected. In addition, the clustering is also influenced if the density is low so that the density 

between building objects and non-building objects is similar. Therefore, non-building objects 

might be clustered as building objects, resulting in change of orientation and shape. 

Nevertheless, the damage condition of the buildings at south part is much severe than that at 

north part, which is of high value to rapid post-disaster damage assessment, rescue and recovery. 

The determination relies on three user defined threshold values, which are highly empirically 

selected. The higher the threshold is, the more conservative the determination process is.  

7. Validation 
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To validate the accuracy of proposed method, the data gathered and analyzed by Federal 

Emergency Management Agency (FEMA) and a research group from Princeton University 

(Owensby, M, et al., 2013) is used as ground truth, since their investigation covered the same 

area. Figure 12 (a) and (b) show the area where the ground truth data was collected and the shape 

file created by Princeton group using ArcGIS. To validate the accuracy of building data 

clustering, the footprint of polygon shape of ground truth data is compared with each building 

cluster segmented from pre-event and post-event airborne LiDAR data sets. Figure 12 (c) - (f) 

show the comparison between experiment results and ground truth data. It is observed from the 

comparison between pre-event data and ground truth data that the building clusters match the 

polygons of shape file accurately for most of the buildings. Although the comparison between 

post-event data and ground truth data is worse, it makes sense because the post-event clusters are 

mostly damaged. An intuitive metric for assessing the accuracy of clustering is the area of each 

cluster. For the purpose of validation, the area of each building of ground truth data, 𝐴𝐴𝑔𝑔, and the 

area of each clusters of experiment data, 𝐴𝐴𝑒𝑒, are compared and the ratio of them, 𝑟𝑟𝑒𝑒→𝑔𝑔 = 𝐴𝐴𝑒𝑒 𝐴𝐴𝑔𝑔⁄ , 

is computed. Ideally,  𝑟𝑟𝑒𝑒→𝑔𝑔 = 1 if the building clusters are perfectly extracted. Due to the errors 

in creating shape file and scanning airborne data, however, 𝑟𝑟𝑒𝑒→𝑔𝑔 = 1 is hardly met for the 

clusters which are actually accurate enough. A buffer interval, therefore, is introduced to 

consider the errors. Figure 13 (a) shows the histogram of the area ratio 𝑟𝑟𝑒𝑒→𝑔𝑔. It is noticed that 

only 32.95% of the ratio very close to 1.0, which implies a very high accuracy of clustering. 

However, when choosing a buffer interval as [0.8, 1.2], this percentage jumps up to 64.77%, 

when the interval is selected as  [0.7, 1.3], the percentage becomes 78.69%. Although the choose 

of buffer interval is affected by the parameters of clustering, 𝜀𝜀 and K, and the parameter 𝐿𝐿0 in 

computing point cloud area, and the creation of ground truth shape file, it is still a subjective 

procedure. A large interval tends to increase the clustering accuracy, the accuracy is decreased if 

a small buffer interval is chosen. 
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Figure 12. Validation of Building Cluster 

In addition to the validation of building clustering, the accuracy of damage level 

determined by proposed method still needs be validated. Since different damage levels are used 

in experiment data and ground truth data set, unification is conducted first. In Princeton data, the 

building damage level is divided into 21 categories. They are denoted as 𝔇𝔇𝑔𝑔 =

{0, 0.5, 1, … , 9.5, 10}. This damage level is determined based on integration of multiple damage 

components, including wind damage, damage at each floor,  roof sheat damage, roof cover 

damage, window damage, door damage, garage damage, etc. For experiment data, although roof 

orientation and roof shape are considered as damage indicators, the damage is mainly determined 
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by the loss of area and volume. For those buildings determined as 𝐷𝐷𝐷𝐷1, the damage level is 

labeled as 1, 2, …, 10, respectively. For those buildings determined as 𝐷𝐷𝐷𝐷2, the damage level is 

labeled as 1, and for buildings as 𝐷𝐷𝐷𝐷3, the damage level is labeled as 0.5, and the non-damaged 

buildings are labeled as 0. This is determined based on the sequence of priority of each damage 

pattern. Therefore, the overall damage level of experiment data is denoted as 𝔇𝔇𝑒𝑒 =

{0, 0.5, 1, 2, … , 10}. Denote a new value, 𝔇𝔇𝑒𝑒→𝑔𝑔 = 𝒟𝒟𝑒𝑒 − 𝒟𝒟𝑔𝑔, for each building, the accuracy of 

damage level determination can be evaluated from this value. Intuitively, 𝔇𝔇𝑒𝑒→𝑔𝑔 = 0 implies that 

the damage level estimated by proposed approach matches ground truth exactly. If 𝔇𝔇𝑒𝑒→𝑔𝑔 is 

greater than 0, it implies the proposed method overestimates the damage level, and on the 

contrary, it is implied that underestimation occurs. The larger |𝔇𝔇𝑒𝑒→𝑔𝑔| is, the worse the estimation 

is. A histogram of 𝔇𝔇𝑒𝑒→𝑔𝑔 is presented in figure 13 (b). It is observed that the proposed method 

tends to overestimate the damage level, only 23.3% of the building matches ground truth damage 

level exactly. Considering the fact that the damage level of ground truth data is determined based 

on multiple criteria, which goes into detail of component level and story level, while the 

proposed approach only leverages the airborne LiDAR data, 𝔇𝔇𝑒𝑒→𝑔𝑔 = 0 is too restrictive. If both 

𝔇𝔇𝑒𝑒→𝑔𝑔 = 0 and 𝔇𝔇𝑒𝑒→𝑔𝑔 = ±0.5 are considered as acceptable, the percentage of accuracy ratio is 

29.55%. If 𝔇𝔇𝑒𝑒→𝑔𝑔 = ±1.0 is also considered, the percentage rises to 43.18%.  
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Figure 13. Histogram of Accuracy 

Since Princeton data takes too many factors into consideration when scoring the overall 

damage, it affects the validation result. Since the proposed method estimates the damage level 
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mainly based on the loss of roof area and volume, it is ideal if it can be benchmarked using loss 

of roof area as ground truth. The FEMA MOFT data collected during Hurricane Sandy is used 

here as ground truth. The damage level is determined based on visible imagery based 

classification (FEMA). However, since different damage level are used for different data sets, 

they are unified at first. Table 4 shows the damage level used in FEMA data and the 

corresponding loss of roof area for experiment data. The same value, 𝔇𝔇𝑒𝑒→𝑔𝑔, is used here for the 

measurement of accuracy, and the histogram of accuracy is shown in Figure 13 (c). If only 

𝔇𝔇𝑒𝑒→𝑔𝑔 = 0 is considered, the accuracy rate is 39.07%. However, since the FEMA damage level 

of minor, major, and destroyed are mainly classified according to the condition of roof 

diaphragm, walls, and other considerations, only considering 𝔇𝔇𝑒𝑒→𝑔𝑔 = 0 is, again, too restrictive. 

For this reason, the accuracy rate jumps to 65.85% when 𝔇𝔇𝑒𝑒→𝑔𝑔 = ±1 is also considered, this, 

compared to the accuracy rate validated using Princeton data, is a huge increase. 

Table 4. Damage Level Definition (FEMA Data) 

Damage Level 𝔇𝔇 Ground Truth Data Experiment Data 

 Damage Classification Loss of Roof Area 

1 No Damage 0% 

2 Affected (0%, 20%] 

3 Minor (20%, 50%] 

4 Major (50%, 80%] 

5 Destroyed (80%, 100%] 

 

Another metric measuring the accuracy is 
TurePositive + FalseNegative

TurePositive + TrueNegative + FalsePositive + FalseNegative
 

where  

True:  the proposed method determines the building as Damaged; 

False:  the proposed method determines the building as No Damage; 

Positive:  the ground truth determines the building as Damaged; 

Negative:  the ground truth determines the building as No Damage 

 



 

75 
 

The confusion matrix for both Princeton and FEMA data are presented in Table 5. The 

diagonal elements are taken into consideration because they stand for the correct estimation of 

building damage condition. The accuracy ratio can be obtained as 87.78% for Princeton Data, 

and 67.76% for FEMA Data, respectively. 

Table 5. Confusion Matrix 

 Princeton Data  FEMA Data 

 Positive Negative  Positive Negative 

True 307 26  214 34 

False 17 2  84 34 

 

CONCLUSION 

This research presented a novel rapid post-hurricane damage assessment approach using 

both pre- and post-event airborne Data. The approach uses multiple indicators for damage 

determination. And a multi-level damage determination process is proposed to identify the 

building damage condition and damage pattern. By specifying the determination threshold value 

and clustering parameters, the approach then automatically extract the damage information and 

damage pattern. A color map of damage pattern is then generated to assist the rapid assessment 

and decision making. The comparison of the results between experiment data and ground truth 

data suggests that the proposed approach is capable of extracting building clusters from airborne 

LiDAR data in a good accuracy benchmarked by manually-created shape file.
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Abstract 

LiDAR (a portmanteau of "light" and "radar.") is a remote sensing technology that measures 

distance by illuminating a target with a laser and analyzing the reflected light.  Among other 

applications, LIDAR is useful for detailed mapping of terrain, elevation, structures, and change 

detection in disaster management at several levels. The field is rapidly maturing in capabilities, 

applications, and utility. During large-scale natural disasters, various LiDAR systems, such as 

airborne and terrestrial LiDAR, can be deployed to collect time sensitive spatial data. However, 

there are often great challenges in synthesizing the collected LiDAR data sets and performing 

rapid integrative damage impact analysis as the collected data are often varied in resolution, 

accuracy, spatial completeness, and storage requirement and strategies. This paper presents a 

detailed analysis of various LiDAR data sets that have been collected before and after Hurricane 

Sandy according to these key data performance metrics. Resolution of LiDAR data from 

different carrier varies dramatically (0.35- 5 point/m2for airborne system and 1750 point/m2 for 

land based mobile system). The achievable relative vertical positon accuracies five locations are 

computed by the comparison of the airborne and mobile LiDAR datasets and it is within 0.10 ± 

0.05 m (mean ± SD). The natural drawback of the airborne system in the loss of vertical 

information is complemented by the land based mobile system, which has an average coverage 

of 43.5%. The results of this study provide practical knowledge of the data efficiency of various 

LiDAR technologies, which can be leveraged by emergency response organizations to better 

plan data acquisition and maximize the benefit of such data acquisition effort. 

mailto:Jg931@rci.rutgers.edu
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Introduction 

In 2010, Hurricane Sandy, the biggest Atlantic storm in United States history, swept through the 

Caribbean and up the East Coast of the United States. The storm is estimated to have cost over 

$68 billion (2013 USD), and at least killed 286 people in the country. Hurricane often causes 

damage so widespread that it overwhelmed the capacity of traditional surveying methods. 

Typically for hurricane Sandy, LIDAR is widely utilized for documenting and assessing the 

damage along with this extreme event. 

Airborne LiDAR is currently the most efficient tool for terrain mapping and federal agencies 

including FEMA, USGS etc. regularly released the public domain airborne data sets. These data 

sets are extremely valuable in constructing digital elevation models (DEMs) and providing 

topography information. Different agencies released their LIDAR data sets which provide unique 

opportunities to look into the details of pre and post hurricane sandy situations. 

USGS Center for LIDAR Information Coordination and Knowledge (USGS CLICK) conduct a 

LIDAR survey in three New Jersey Countries (Ocean County included) on April 10 2010. Even 

though, it is five months before the occurrence of the hurricane Sandy, it remains the one of the 

most high resolution airborne data reference for these disastrous events. 

US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of 

expertise (JALBTCX) performed a coastal survey along the Atlantic coast of NJ and New York 

(Rockaway) from August 28 to September 11 2010. The collection effort follows the coastline 

and extends 500m inland and 1000m offshore or to laser extinction, whichever comes first.  

The USGS use by Experimental Advanced Airborne Research Lidar (EAARL) system to 

conduct two surveys targeted at hurricane Sandy on October 26 2012 and November 1 

2012.   The post and pre LIDAR data are compared to characterize the hurricane-induced coastal 

changes.  

Airborne does not equally meritorious in providing the detail vertical information for the damage 

assessment of individual houses. Terrestrial system is restricted for their disability in mobility. 

Mobile LiDAR system fills the gap between the airborne LiDAR system and terrestrial system 

by bringing mobility to the terrestrial system without losing much of its resolution and accuracy. 

The use of mobile LiDAR in such a post-disaster scenario holds great potential. However, 
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despite this obvious potential, there have been few systematic studies (Ellum and N El-Sheimy 

2002; Barber et al 2008; Haala et al 2008) on examining the types of damage data that can be 

collected via such a technology. A team led by Rutgers civil engineering professor Jie Gong, 

Ph.D., CAIT, teamed up with Ohio-based Woolpert Geospatial Mapping Co. collected the first 

hand mobile Light Detection and Ranging (LiDAR) data in the devastated coastal areas (Gong 

2013). These areas include Staten Island, Rockaway in the New York City and Ortley Beach, 

Seaside Heights, Mantoloking on the New Jersey Shoreline.  Our collected post-Sandy mobile 

LiDAR data set provides a unique opportunity to evaluate the strength and weakness of the 

mobile LiDAR technology as a field data collection method for hurricane damage assessment. 

To ensure the decision and assessment based on mobile LiDAR system, the validation of the data 

is extremely important. 

Terrestrial LiDAR is with highest accuracy (2-5 mm) However, a single scan of the terrestrial 

LiDAR can take more than 10 minutes. Even though the ranging of the LiDAR can be as far as 

300 meters, the laser light can be easily blocked by the houses and vegetation which make it 

even difficult to scan the objects a block away. Both the duration of scan time and the ranging of 

reflection laser lights make it impossible to be the ideal tool for the rapid data collection in the 

post disaster environment in wide range of areas.. 

Application of individual LIDAR system has been widely adopted by researchers and for 

practical usage. Airborne LIDAR have been used in building detection or feature extraction. 

(Awrangjeb et al 2010; Jochem et al 2012; Meng et al 2010; Sofia et al 2011). Other researchers 

conduct terrestrial LIDAR scan to detect details for structural damage assessment (Olsen et al 

2009, 2012; Fewtrell et al 2008,2011;). Mobile LIDAR is utilized for data collection (Gong et al 

2012; El-Halawany et al 2011). 

Recent studies focus integration of these system and most commonly  combination of terrestrial 

LIDAR with airborne LIDAR for modeling and mapping ( Starek at al 2011; Hopkinson et al 

2013; Lindberg et al 2012; Bremer et al 2012; Hilker et al 2010). More innovated approaches 

attempt to combine all Airborne, Mobile and Terrestrial LIDAR for measurements (Fowler and 

Kadatskiy 2011; Lin et al 2012; Holopainen et al 2013; Hyyppä et al 2013).  
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Literature Review 

LIDAR has been widely applied in damage assessment for extreme events. Many papers have 

focus on error analysis. A thorough description of different type of accuracies can be viewed 

Baltsavias’s research (1999). He derived formulas represent approximation of these accuracies. 

The derived result of each error scale is listed in the table 1. 

Table 1 Derived error scale by Baltsavias (1999) 

Accuracy Type Description and influence factors Possible Error 

Scale 

Range accuracy Most complicated, minimum among the 

error sources (necessary measures and 

precautions) 

Around 1.5 cm 

Position accuracy Depends on DGPS, GPS hardware and 

satellite constellation 

5 – 15 with DGPS 

and post 

processing 

Attitude accuracy Depends on the quality of the INS, INS 

frequency (i.e., interpolation error) , 

- 

Time offsets Dependent on major parameters like flying 

height, scan angle, terrain topography, and 

land cover 

5–10 cm in good 

cases 

Both mapping systems (airborne based systems and land based mobile systems) are composed of 

different components including GPS, Inertial Measurement Unit (IMU)/ Inertial Navigation 

System (INS), Distance Measurement Unit (DMI) and Sensors (LiDAR scanners). The vertical 

positioning accuracy of sensors is provided by the manufacture companies.  

Table 2 Key features of major sensor provided by manufacture companies 

Company Type 

Range Accuracy Data Rate 

10% 

Reflectivity 
1 sigma Up to 

Velodyne 
HDL-64E 50 m 20 mm 1.3 m 

HDL-32E 50 m 20 mm 700 k 

Optech Lynx 250 m 5 mm 600 k 
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RIEGL VQ250 180 m 5 mm 300 k 

FARO 

3D 

 

130 0.6-130 m 2 mm 976 k 

300 0.6-300 m 2 mm 976 k 

Leica 
Scan Station 

P20 120 m 3 mm 1 m 

More researches have been focus on the accuracy induced by the integration system and their 

performance under practical environments. Airborne laser altimetry system was first proposed by 

NASA in 1980s and a pioneer study including changes monitoring in the Greenland ice sheets. In 

this study, Krabill indicated that the reliably accuracy of the airborne LiDAR system can be 

around 0.20 meters. During the late 1990s, the Airborne Laser Swath Mapping (ALSM) is 

available from commercial manufactures and more studies are focus on the vertical accuracy of 

the system under different environments. 

 

 

 

 

 

Table 3 Smarmy of previous literatures on the vertical accuracy of airborne system in different 

environment 

Studies Environment Reference 

Vertical 

Accuracy 

 Krabill(1995) Ice-surface elevations 

Differential Global 

Positioning System 0.20m 

Kraus and 

Pfeifer(1998) wooded area 

photogrammetry with 

reference to a big pilot 

project 0.25 m 

Latypov(2002) 

surface size and 

flatness 

overlapping LIDAR 

datasets 0.21m 
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a Töyrä(2003) 

wetlands, deltas, or 

other similar areas in situ survey data 0.26 m 

Reutebuch et al 

(2003) heavily forested areas 

Conventional ground 

survey methods 

 0.22 ± 

0.24 m 

(mean ± 

SD) 

Hodgson and  

Bresnahan(2004) 

Pavement, Low Grass, 

High Grass, Brush/ 

Low Trees, Evergreen 

Forest, Deciduous 

Forest 
 

0.17-0.19m 

Hopkinson et 

al(2005) 

Utikuma boreal 

wetland area kinematic GPS surveys 

 0.15 ± 

0.22 m 

(mean ± 

SD) 

May and 

Toth(2007) - 

 analytical derivation of 

error formulas 0.225m 

Bowen and 

Waltermire(2007) 

Western river coridor 

(variable terain and 

large topographic 

relief.) ground GPS surveys 0.43 m 

Other researchers evaluated the horizontal accuracy of the airborne LiDAR system. Kilian et al 

(1996) purposed the method of overlapping strips to calibrate the airborne LiDAR data and this 

method is adopted to exam and increase the airborne LiDAR horizontal accuracy in researches ( 

Crombaghs et al 2000; Maas, 2000; Bretar et al 2004; Vosselman, 2002; Pfeifer et al 2005).  

The accuracy of the first operational land-based Mobile Mapping System (MMS) GPSVANTM   

developed by Ohio State University in 1991 was limited to 1-3 meters (C Ellum and N El-

Sheimy, 2002).  In mid 1980s, high precision IMU have dramatically increase potential of the 

MMS by providing high-accuracy orientation information and the accuracy can reach 0.06-0.20 

meters when the speed of vehicle is less than 70 km/h (R Li 1997). Some recent studies purposed 

that the z position RMS error can be as around 0.5mm (Dix et al 2012; Jaakkola et al 2014). 
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There is little systematic study on the performance of the LIDAR in residential shoreline areas 

and combination of both mobile and airborne LIDAR for damage assessments. The purpose of 

this research is to explore the potential feasibility of mobile LiDAR integrated with current 

government agency released airborne LIDAR as a tool for the damage assessments. This paper 

starts by a description of the approach for our data management. The analysis will base on three 

aspects: (1) accuracy analysis; (2) resolution analysis; (3) completeness analysis.  In accuracy 

analysis, an airborne LiDAR is utilized as a baseline data to the validation of the mobile LiDAR 

data collected. ANOVA analysis is conducted to determine whether the difference between 

mobile LiDAR and airborne LiDAR data is significant. The resolution analysis followed will 

demonstrate to what extend can the house components be represented by points in the mobile 

LiDAR data. Coverage analysis will focus on the limitation of the mobile LiDAR system on the 

components features extraction by illustrating what parts of information is missing in the data 

collection process.  Finally, a discussion of the analysis results and some conclusions are given. 

LiDAR Applications in Hurricane Sandy 

Data Storage  

Different from traditional data collection method, LIDAR data collection is a massive data 

generating process. According to the LAS specification by ASPRRS, each single LIDAR point 

should contain at least core 20 bytes. From the summary of the datasets we have, each point 

contains around 28 bytes. Given the fact that the data rate for the most common used sensor is 

from 300 thousands to 1.3 million points per second, when it is multiplied by 28 bytes, the data 

produced in a second is 8 to 35MB and accumulatively 0.5 to 2GB data is required for storage 

every minute. Even for the most powerful 64 bit personal computer which supports a maximum 

of 128GB memory, it is beyond its capacity to open 2 hour LiDAR data at a time. Thus, data 

storage management becomes critical and essential issue for the LiDAR survey. Two simple 

ways to discrete the data is dividing the data into smaller pieces by fixed duration of the time or 

fixed size. These methods are good for its simplicity in operation and maintaining the time 

continuity, but fail to reflect the spatial relation between points. The requirement for rapid 

assessment for such disaster scenario spurs a systematic way of data management.  

Rather than simply discrete the data with fixed duration or file size, a multi-scale grid system is 

introduced to store the data. The tremendous data file is divided into three different sizes of 
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blocks. The file size is subtracted to megabyte scale, which is appropriate for the computation of 

current normal computers. Furthermore, each block is geo-referenced and has a corresponding 

boundary. A CAD file is linking the geo location to the data file. Compared to the ambiguity of 

the location in traditional data management, this approach save the trouble of remembering the 

file name to the corresponding location by automatically figure out which file the target location 

is belong to. 

Table 4 Multi-scale grid system of damage assessment 

Scale Type Grid 

Size 

Data 

Resource 

Total 

Size 

Average 

Size 

Purpose Addressed 

Entire 

Shoreline 

Airborne 

LiDAR 

5km by 

5km 

NY 

USACE 

Rockaway 

8.6 GB 500 MB Airborne LiDAR 

storage, shoreline & 

municipality based 

change detection, 

DEM extraction 

NJ 

CLICK 

20.5 GB 500 MB 

NJ 

USACE 

50.0GB 350 MB 

Pre Eaarl-

B 

1.3 GB 30 MB 

Post 

Eaarl-B:  

1.2 GB 30 MB 

Municipality Mobile 

LiDAR / 

Airborne 

80m by 

80m 

Rutgers 

Survey 

212GB 300 MB Mobile LiDAR 

storage, municipality 

based change 

detection; 

Individual 

Building 

Mobile 

LiDAR 

house 

outline 

polygons 

Rutgers 

Survey 

212GB 3 MB Detail assessment for 

individual house, 

component based 

assessment, damage 

measurements, 

From the approach above, the gigabytes data are subtracted into smaller blocks without losing 

the spatial relation and different size of blocks are targeted at different assessment purposes. This 
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data management method will potentially have two advantages: (1) improvement of the data 

processing efficiency; (2) preparation for future parallel computing for rapid response.  

Data Resolution 

The resolution of the datasets varies due to different data collection systems and the features of 

the system carrier, e.g. speed, distance to the objects etc. Even for the airborne system, the 

resolution can be dramatically different. The horizontal resolution for the NJ CLICK data is 10 

times the resolution of the Eaarl-B Pre hurricane data sets. This low resolution does not mean 

these data is no use for damage assessment, but do have some limitation in the accuracy of 

component measurement. Even for the NJ CLICK airborne data sets, there are only around 4 

points per square meter horizontally, which means, any objects within 30 cm might be ignored. 

 

Figure 1 Resolution of different airborne LiDAR data sets 

This limitation can be implemented by the mobile LIDAR data sets. Typically, the horizontal 

resolution of the mobile system can reach an average of 1750 points per square meter compared 

to a maximum of 3.5 points per square meter for the airborne LiDAR system. The surface 

resolution of mobile LIDAR can be even higher with 6300 points per square meter. This high 

resolution makes it possible for the capture of very tiny objects, which is curtail important for the 

detail assessment. 

Results of the data resolution: 

Table 5 Summary of solution of airborne and mobile LiDAR data sets 
 

Horizontal Surface Resolution 

Airborne  0.35 - 5 points/m2 N.A 

Rutgers Mobile 1750 points/m2 6300 points/m2 

 

0.35 0.5

3.5 3.1

0.9
0

1

2

3

4

Eaarl-B_Pre Eaarl-B_Post NJ_CLICK_Pre USACE_Pre NY_Post

Resolution (points per square meter)



 

89 
 

Data Accuracy 

Reference is required to evaluate the precision and accuracy of the mobile LiDAR data. A true 

reference requires an accuracy at least one magnitude higher that the data to be assessed. High 

accuracy checkpoint is beyond the resource of current study. Instead, different published 

airborne LiDAR datasets are utilized as baseline to compare the performance of the LiDAR data 

collected by Rutgers mobile LiDAR systems. 

The comparison is conducted in various environment conditions including urban environment 

(New Brunswick downtown), shoreline residential communities (Normandy Beach and Ortley 

Beach) and important infrastructures (Rockaway Bridge), which are representative for the dense 

population area. Due to the limitation of the coverage of mobile LiDAR data collected, the 

comparison analysis does not extend to mountains and other low population density areas.  

Three possible resources for the errors (Hodgson and Bresnahan (2004)) including elevation 

error, horizontal error form the sensor measurements and the error in the labeling process from 

different returns. This analysis will focus on the elevation error of the data set of the pre airborne 

LIDAR to the post mobile LIDAR. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Workflow of the accuracy analytics 
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In order to conduct the analysis of variance (ANOVA), significant noise is removed. This noise 

includes: a) Missing data gap of the airborne data sets due to the low resolution; b) Sudden 

elevation jump due to the unexpected objects above road (e.g. rock, vegetation).  

 

Figure 3 Comparison of airborne and mobile LiDAR in Normandy Beach (w/o denoise) 

These noises are addressed to by the slope continuity of the road profile. A conservative 

threshold of 0.2 meters is selected to remove the noise in the comparison. The accuracy of 

airborne system is around 0.1 meter and the accuracy of the mobile LiDAR system is around 

0.05 meter. Thus any difference greater than the combination of the maximum error of both 

systems (0.15 meter) are defined as noise. 

Table 6 Summary of accuracy analytical results in different environments 

 

Environment Locations 

Airborne 

Data 

Mean 

 (m) 

Standard 

Deviation 

(m) 

Urban& 

Residential 

New Brunswick 

Downtown USGS NJ -0.073 0.051 

Urban& Schools 

Rutgers Busch 

Campus USGS NJ -0.123 0.021 

Shoreline & 

Residential Normandy Beach USGS NJ -0.069 0.037 

Shoreline & 

Residential Ortley Beach USGS NJ -0.103 0.020 

Urban & 

Infrastructure Rockaway Bridge 

USGS 

NY 0.023 0.044 
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Spatial Completeness 

The completeness of the LIDAR is another critical issue for the assessments based on LIDAR. 

With its nature limitation of airplane as a LIDAR  system carrier, airborne LIDAR system 

inherently perfect at capture at capture top view projection of communities, but disable in 

obtaining vertical information. Thus the application for airborne LIDAR focus on feature outline 

extraction, digital elevation map (DEM), change detection.  

Mobile LIDAR implemented airborne LIDAR not only in the way of higher resolution but most 

importantly envision the vertical information. However, compared to airplane, the mobile 

LIDAR system carrier, the mobile vehicles are dramatically impacted by the trajectory and 

obstructive objects in the middle of the lesser emitted. In the post-disaster situations, especially 

for hurricane damage which combines wind damage with flood damage, the access to the severe 

damage area could be blocked by the collaborate damage caused by the disasters. To specify, the 

sand brought from the eroded sand dune and the debris of the collapsed houses brought by both 

flood and wind stop the mobile vehicles from assessing. Besides, time emergency and the 

limitation of accessibility of mobile vehicle itself make it impossible to conduct a 360-degree 

scan of the all damaged houses.   

Another influence is the scan angel.  Theoretically, in optics, Lambert's cosine law says that the 

radiant intensity or luminous intensity observed from an ideal diffusely reflecting surface or ideal 

diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of 

sight and the surface normal. Ideally, when the angle between the scanner and the 

wall is less than certain threshold θ, the diffusely 

reflecting laser lights are not strong 

enough to bounce back to the scanner 

resulting in losing of the data.  

  

Figure 4a Lambert's Lar for diffusely reflection; 4b Information missing in the practical survey 

House B 

House A 

θ 

Information Lost 
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Practically, our mobile survey data collected from the Ortley Beach after hurricane Sandy 

provides us a unique way to validate what exactly percentage of data can be captured in the real 

survey environment. 

 

Figure 5 Horizontal data coverage for mobile LiDAR 
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Figure 6 Wall coverage for mobile LiDAR 

 

Conclusion of coverage analysis 

A coverage analysis of all houses in Ortley Beach is conducted in this study. An average of 

43.57% of the building is captured by mobile LiDAR systems with a standard deviation of 

19.67%.  

Table 7. Accuracy Analysis 
 

Horizontal 

Coverage 

Vertical Coverage 

 
MEAN STD MEAN STD 

Airborne  ~100% N.A ~0% N.A 

Rutgers Mobile 43.57% 19.67% 47.44% 29.26% 

With the limitation of the scan angle and accessibility, mobile LiDAR system is not 100% 

coverage all the scan area and there is no way to fill in the missing information especially when 

mobile LiDAR data serve as a historic documentation. Thus the future UAV LiDAR system 

should be significantly necessary for the 360-degree information collection and documentation.  
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Results and Discussion 

This paper presents a systematic study of performance of the current collected LIDAR data sets 

and addresses to four frequently ask questions: How can this gigabyte data be storage for future 

computation? What is the resolution of the LIDAR data? How accurate can the LIDAR be? What 

part of communities is missing when using LIDAR? 

The multi-scale grid data management method provides an innovated approach for data storage 

and future analysis. This approach will inevitably speed up the processing speed of the massive 

data sets, which enable rapid response for urgent tasks in such disastrous scenario. Quantitative 

analysis of the resolution and completeness give a detail description of to what extent can be 

objects be represented by different LIDAR and what part of information is missing. From 

ANOVA analysis, our result shows that the post hurricane mobile LIDAR aligned 

correspondingly to the pre hurricane airborne data sets published by government agencies. 

However, one of the drawbacks of this paper is failing to validate the accuracy of the mobile 

LIDAR data with a higher accuracy reference points. Future work will likely be focused on 

optimization of the grid size for the data management system. And the datasets from the new 

grid system are extracted for the damage assessment. It would be instructive to apply the LIDAR 

data to rapid computation and response for such hazard event.  
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ABSTRACT 

Storm surge generated by tropical storms is a severe threat to coastal communities. During 

a hurricane event, it is essential to collect data on storm surge height as it helps researchers 

understand the process that triggered the event, provides insights about localized flooding patterns, 

and forms the bases for forecasting future vulnerabilities. Tide stations, high water marks, and 

pressure sensors are commonly used methods for observing and measuring storm surge. Among 

these methods, high water marks is the best method for measuring the highest storm surge for an 

event, but it relies on trained survey crews to measure high water marks with GPS equipment. In 

this research, we proposed a new method for precise and rapid measurement of high water marks 

by fusing geo-tagged post-storm damage photos with mobile LiDAR data. As our data collection 

capability quickly expands with the proliferation of mobile devices and the rapid rise of mobile 

LiDAR mapping technologies, we are poised to tap into the potential of internet-scale storm surge 

height measurement with our proposed storm surge measurement method. Specifically, this paper 

describes the development of such a new method, and the validation of the proposed method using 

several spatial and imagery data sets collected during Hurricane Sandy. Challenges encountered 

during the research are discussed to highlight future research needs.  

 

INTRODUCTION 

Storm surge height is one of the critical hazard parameters to be collected during post-

hurricane data assessment. Storm tide, defined by the National Oceanic and Atmospheric 

Administration (NOAA), is the water level rise due to the combination of storm surge, the 
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abnormal rise of water level due to the storm, and the astronomical tide, the normal rise and fall 

of the water due to the gravitational pull of moon and sun. In reality, storm surge or even storm 

tide only make up a part of what causes water level to rise along the coast during a hurricane. 

 In the United States, storm surge height information is generally provided by USGS and 

FEMA though water-level sensors, tide stations and field teams. In some cases, though, this 

information is not very precise due to the limited number of data. For example, the water-level and 

wave-height sensors were used for storm height characterization during the Hurricane Sandy by 

USGS. However, the number of these sensors is limited. For example, only 23 sensors were used 

in New Jersey and 58 in New York to monitor Hurricane Sandy storm tide. This contrasts sharply 

with the rest of the storm damage data which are often complied for individual housing properties. 

The lack of detailed and fine-scale storm surge height information could lead to the difficulty in 

developing accurate storm surge damage models as there is an apparent mismatch between the 

resolutions of storms surge data and building damage data. Wave and surge models have been 

shown to result in increasing errors as they move overland arising from two major factors: (A) 

Increased dissipation overland is not fully accounted for in standard models, particularly for water 

waves; and (B) Overland wind stress will be partially absorbed by canopy elements like trees and 

houses and will not entirely reach the water surface, with strong implications for surge and waves 

(Kennedy et al., 2011).  Therefore, knowledge of storm surge heights, in particular at locations 

further away from the shoreline, is valuable information for calibrating storm surge models.      

Field teams are a good source of storm surge height information as one of their tasks is to 

find high water marks. High water marks, formed by dirt and debris in the water that deposited on 

wall surfaces, can provide the best estimate of the storm surge level. Generally, the still water level 

was found in a room that was not breached by wave action. The high water mark is often caused 

by the conjunction of storm surge, tides, wave, and freshwater input. Traditionally, high water 

mark is the best method for capturing the highest surge from a storm, though it relies on trained 

survey crews and can be subjective.  

In this paper, we introduce a new data fusion method that fuses disaster photos from a 

variety of sources (field teams, volunteers, and Internet) with mobile lidar data for accurately 

obtaining high water mark information without performing field measurement. Because of the 

pervasive use of mobile devices, disaster photos are now often widely shared and available on the 

Internet. Many of these photos provide first-hand information on the extent of disaster, some of 
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them way before the arrival of field teams. The new method will promote a crowd source-based 

approach for collecting critical hurricane impact parameters. The approach will greatly reduce field 

data collection time and improve the safety of field teams as it eliminates the need of performing 

measurement on damaged structures, some of them may be too dangerous to approach. Also since 

the high water mark data is calculated and estimated though a well built and scientific process, the 

error caused by personal bias could be diminished. 

 

RESEARCH BACKGROUND 

 Post-disaster field data collection is a documentation procedure that provides perishable 

damage data for damage assessment. A variety of methods can be used for this purpose. These 

methods include, but are not limited to, paper and pen (Chiu & wadia- Fascetti 1999), Electronic 

(Crandell & Kochkin 2005), Photo/Video log (Curtis & Mills 2012), VGI (Volunteered 

Geographic Information) (ASCE Indonesia Study 2014), Aerial/Satellite imagery (Adams et al. 

2004, Yamazaki et al. 2005, Klemas 2009), static terrestrial lidar (Olsen and Kayen 2013; Chock 

et al. 2013, Gupta et al., 2012 ), airborne lidar (Ferrucci et al. 2007), and mobile lidar (Gong and 

Maher 2014). Most of these approaches rely on data remotely sensed from air- or ground-based 

platforms. Recently, with the ubiquitous use of mobile devices, an increasing number of images 

have been shared through the internet. Such VGI information makes it possible for researchers to 

assess damage data remotely or provide crowdsourced damage data to the public. For example, 

the Philippines Hurricane Yolanda Structural Analysis team (PHYSA 2014)) created a new open-

forum project model for post-disaster inspection.  In the project, the investigators not only shared 

their week-long, post-disaster damage assessment of the impacted regions, but also invited other 

team input data on Philippines Hurricane post-disaster investigation. This provides a way to all 

ASCE members to participate in the Indonesia Study simultaneously and remotely, which can 

accelerate the speed of Philippines Hurricane damage evaluation and analysis. One of the usages 

of this kind of data is to measure storm surge height. This is accomplished through a comparison 

between the height of tree bark removal and the height of people in some of the photographs 

(Needham 2013). Albeit this is a simple and feasible method, the outcome is likely only accurate 

to certain degree as it involves a subjective estimation process. 

 The rising of Internet/crowdsourced damage data and the increasing availability of high 

resolution and high accuracy 3D disaster data, such as terrestrial scan and mobile lidar data, 
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provides a unique opportunity to rethink how damage assessment and field data collection can be 

done with these new methods. One of the intriguing applications is to remotely measure high water 

marks and recover accurate and finer scale storm surge height information in the impacted 

communities. During mobile lidar data collection, street-view photos are often collected, geo-

referenced, and projected onto point cloud data for point cloud colorization. The lidar data provides 

detailed 3D information of the buildings, from which we can easily measure the dimension of the 

buildings in various aspects. However, since the lidar point clouds have very coarse color 

information, often from the street view imagery, this leads to the difficulty to tell the surge line 

from the mobile lidar data only. This is mainly because the lidar scans and photos are taken from 

a mobile vehicle driving on the road and positioned at a relatively large distance from the damaged 

housing properties. On the other hand, images taken by damage survey teams and property owners 

tend to narrowly focus on certain damage features and often have higher resolution. However, it 

is difficult to recover 3D information from these photos, especially geo-referenced 3D information. 

The advantages and disadvantages of these two sources limit the employment of them individually. 

But a combination of two overcomes the disadvantages. 

In this paper, we introduce a method that leverages both types of data and exacts each 

other’s strength to accomplish the task of storm surge height estimation. More specifically, we 

formulated a computational approach that fuses geo-tagged post-storm damage photos with mobile 

LiDAR data to extract high water mark information in a common geospatial coordinate system. 

We explored the use of local image feature-based 3D alignment and user assisted 3D alignment to 

support storm surge height calculation. The lesson learned in this storm surge height data 

processing will provide the foundation for future improvement of this technology to better support 

post-disaster recovery process. 

 

PROPOSED STORM SURGE HEIGHT ESTIMATION METHOD 

 The technical rationale behind our proposed approach is local feature-based image 

matching and 3D alignment of point clouds with photos from heterogeneous sources, such as 

disaster assessment teams, social media, and etc.. We assume the photos taken from sources other 

than the mobile lidar system itself are geo-tagged as the pervasive use of GPS capable mobile 

devices. Figure 1 outlines the detailed workflow in our proposed approach.  The major components 

are GPS based screening, image matching, and VGI and lidar data fusion. To develop and validate 
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all the methods involved in this workflow model, we used several data sets acquired during 

Hurricane Sandy. In the following, we give an overview of the data sets, explain each of the 

components in our proposed approach, and discuss the results of our proposed approach. 

 
  Figure 1. Proposed Surge Height Estimation Approach 

 The data sets used in this research include a post-Sandy mobile lidar data set collected by 

Rutgers University and a damage photo data set collected by several other post-disaster damage 

assessment teams. Mobile lidar offers an opportunity to scan residential buildings at ground level 

and simultaneously capture street-view imagery. The system used for mobile lidar data collection 

is an Optech LYNX Mobile Mapper M1 system. The LYNX system relies on two 500 kHz LiDAR 

sensors to collect a million points per second while maintaining survey grade quality precision. 

Without ground control points but with a mobile base station, the Optech system is capable of 

obtaining LiDAR data sufficient for feature extraction of planimetric and topographic features 

typically at an absolute accuracy of +/-10cm @ 1 σ in good GPS coverage areas and an relative 

accuracies of +/- 5cm @ 1 σ anywhere within the project area.  

In the aftermath of Hurricane Sandy, several academic research teams also entered into the 

disaster impacted area to collect perishable storm damage data with the tradition field survey 

methods. As a part of their trips, they often took geo-tagged post-storm damage photos. In this 

research, we used a set of geo-referenced photos from a joint Princeton University and University 

of Notre Dame damage assessment team. Hereby, we refer this set of photos as VGI photos. The 

team surveyed the severed damaged communities along the New Jersey coastline during their 

week-long damage assessment activity.  

Mobile lidar data usually consists of geo-referenced point clouds and street-view imagery. 

The point cloud data can be projected onto the imagery data by treating the laser scanners and 

high-definition cameras as classical stereo-pairs. The mobile lidar imagery are often taken at larger 
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distance from damaged structures when compared to the VGI photos taken by foot-on-ground 

damage assessment teams. Therefore, it is often difficult to identify high water marks directly from 

mobile lidar imagery. For example, Figure 2 shows that high water marks can be clearly identified 

in VGI photos while it is not the case with the mobile lidar imagery.  

  
(a) (b) 

Figure 2. (a) Mobile lidar imagery; (b) A photo taken by the field survey team 

GPS-based Screening 

 Running local feature-based image matching between the entire set of mobile lidar imagery 

and survey photos is prohibitively expensive, even if it is only for individual communities. 

Considering both mobile lidar imagery and survey photos have embedded GPS information, albeit 

at different positional accuracies, one logic step is to group them into subsets - a step we referred 

to as GPS-based screening. Another motivation behind the screening is that it is well-known that 

building structures often have similar local features that tend to confuse the local feature based 

image matching methods. By dividing the photo sets into smaller subsets, this source of confusion 

can be greatly reduced.  

The mobile lidar imagery in this research is organized according to the vehicle trajectories. 

Thus, the trajectory information was used as one source of information to pair with field survey 

photos. The detailed steps for GPS screening are shown in Figure 3. An essential step in this 

approach is projecting the GPS traces of VGI and mobile lidar photos onto one map frame which 

has grid sizes spanning 0.002 latitude and 0.001 longitude. The subsequent photo matching will 

be only carried out within each grid. In this way, computational effort and complexity can be 

greatly reduced.  
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Figure 3. GPS-based Screening of Images from Different Sources 

Image Matching 

 This step involves registration or alignment of VGI photos with mobile lidar imagery.  The 

mobile lidar imagery has known projection properties to lidar point clouds. Therefore, once the 

relationship between mobile lidar imagery and VGI photos can be derived, 3D information of 

water marks in a common chosen coordinate system can be calculated.  However, manually finding 

the paired mobile lidar imagery for each VGI photo is not an easy work. To automatically detect 

images which captured damages of the same structures, a SIFT (Scale-invariant feature transform) 

based method for automated image matching was employed (Figure 4). This method is capable of 

finding images which display similar scenes based on local image features. Figure 4 shows some 

example matching of damage images from two different data sets used in this research. It can be 

seen that the method is robust to view angle and illumination variances.  

 
Figure 4. SIFT-based Matching between VGI photos and Mobile Lidar Imagery 
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This step involves 3D alignment of VGI images with mobile lidar imagery. Once pairs of mobile 

lidar imagery and VGI images are identified, it is straightforward to relate VGI photos to point 

cloud data since there is known correspondence between mobile lidar imagery and lidar point 

clouds. Once this is accomplished, there are three steps involved in recovering the coordinates of 

high water marks.  

 The first step is to compute the Projection Matrix P between each point in a lidar point 

cloud Pw and each pixel in a VGI image Pc. Currently, this projection is solved with the assistance 

of manual inputs of several correspondences between VGI image pixels and lidar point clouds. We 

used the camera calibration with 3D objects method developed by Zhang (2004). More 

specifically, the feature points of the building in both lidar point cloud and images are manually 

detected in exactly the same order as shown in Figure 5, and are saved Pc and Pw. The 2D pixel 

is denoted by 𝑃𝑃𝑐𝑐 = [𝑥𝑥, 𝑦𝑦]𝑇𝑇, and 3D point is denoted by 𝑃𝑃𝑤𝑤 = [𝑋𝑋,𝑌𝑌,𝑍𝑍]𝑇𝑇. Write the point coordinate 

as homogeneous coordinate format as 𝑃𝑃𝑐𝑐 = [𝑥𝑥,𝑦𝑦, 1]𝑇𝑇 and 𝑃𝑃𝑤𝑤 = [𝑋𝑋,𝑌𝑌,𝑍𝑍, 1]𝑇𝑇. The relationship 

between Pw and Pc could be expressed as  

𝑠𝑠𝑃𝑃𝑠𝑠 = 𝑨𝑨[𝑹𝑹 𝒕𝒕]𝑃𝑃𝑤𝑤 (1) 

where  

𝑨𝑨 = �
𝛼𝛼 𝛾𝛾 𝑢𝑢0
0 𝛽𝛽 𝑣𝑣0
0 0 1

� 

is the intrinsic matrix and 𝑷𝑷 = 𝑨𝑨[𝑹𝑹 𝒕𝒕] is the projection Matrix. Based on (1), the correspondence 

between 𝑃𝑃𝑤𝑤 and 𝑃𝑃𝑐𝑐 could be written as: 

�𝑋𝑋𝑖𝑖 𝑌𝑌𝑖𝑖 𝑍𝑍𝑖𝑖 1 0 0 0 0 𝑥𝑥𝑖𝑖𝑋𝑋𝑖𝑖 𝑥𝑥𝑖𝑖𝑌𝑌𝑖𝑖 𝑥𝑥𝑖𝑖𝑍𝑍𝑖𝑖 𝑥𝑥𝑖𝑖
0 0 0 0 𝑋𝑋𝑖𝑖 𝑌𝑌𝑖𝑖 𝑍𝑍𝑖𝑖 1 𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖 𝑦𝑦𝑖𝑖𝑌𝑌𝑖𝑖 𝑦𝑦𝑖𝑖𝑍𝑍𝑖𝑖 𝑦𝑦𝑖𝑖

� 𝑷𝑷 = 𝟎𝟎 

where  

𝑷𝑷 = [𝑝𝑝11,𝑝𝑝12, … ,𝑝𝑝34]𝑻𝑻 

For the n selected feature points, stack all equations as: 

𝑮𝑮𝑮𝑮 = 𝟎𝟎 

𝑮𝑮 = [𝑮𝑮1𝑇𝑇 , . . . ,𝑮𝑮𝑛𝑛𝑇𝑇]𝑇𝑇 

The Projection Matrix 𝑷𝑷 is the eigenvector of 𝑮𝑮𝑇𝑇𝑮𝑮 associated with the smallest eigenvalue. 

 The next step is to obtain the correspondence between LiDAR Point Cloud and Image. 

Since the Projection Matrix is a 3 by 4 matrix, which is non-invertible, the image cannot be 

projected onto the LiDAR directly. Instead, the LiDAR Point Cloud is projected onto the image 
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using the computed Projection Matrix 𝑷𝑷. For each point of the LiDAR Point Cloud 𝑃𝑃𝑃𝑃𝑖𝑖, we find 

out where it is projected in the image 𝑃𝑃𝑃𝑃𝑗𝑗 and construct the correspondence between i to j. The 

correspondence is illustrated in Figure 6. 

 The last step is to assign each point 𝑃𝑃𝑃𝑃𝑖𝑖 a RGB value from the image 𝑃𝑃𝑃𝑃𝑗𝑗. The lidar point 

clouds then have information on which points are projected onto the high water marks shown in 

the VGI images. These water marks can be directly measured in the lidar point clouds (Figure 7). 

 

Figure 5. Establishing Correspondence Between Point Clouds and VIG Images  

 
Figure 6. The correspondence between Lidar Point Clouds and VGI Images 

  
Figure 7.  High Water Mark Measurement from VGI Images and Point Cloud Data 
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RESULTS 

 The proposed method was applied on the Hurricane Sandy mobile lidar and Princeton-

Notre Dame data sets. The focused community of interest is Ortley Beach,New Jersey. The 

analyses showed that thirteen VGI images that have high water mark information can be matched 

to mobile lidar data. The matching results and recovered high water mark information are shown 

in Table 1. The locations of these water marks are plotted in Figure 8. Knowing the elevation of 

these high water marks contributes to better understanding of the extent and distribution of storm 

surge in this particular community.  

 

Table 1. Estimated High Water Mark Elevations  

Building 

ID Name x(longitude) y(latitude) 

Storm Surge 

Height(m) 

A55 DSCN0241.JPG 39.96 74.07 3.19 

A37 DSCN0151.JPG 39.96 74.07 3.21 

A310 Camera 3 1350.JPG 39.95 74.07 2.62 

A274 Camera 3 1345.JPG 39.95 74.07 2.84 

A236 Camera 3 1155.JPG 39.95 74.07 2.84 

A227 DSCN0602.JPG 39.95 74.07 2.42 

A21 DSCN0048.JPG 39.96 74.07 2.80 

A20 DSCN0039.JPG 39.96 74.07 2.43 

A196 DSCN0561.JPG 39.95 74.07 2.92 

A194 DSCN0549.JPG 39.95 74.07 3.05 

A17 DSCN0020.JPG 39.96 74.07 1.96 

A165 Camera 3 628.JPG 39.95 74.07 3.22 

A159 DSCN0424.JPG 39.95 74.07 2.90 
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Figure 8. Locations of High Water Marks 

CONCLUSIONS 

 In this paper, we presented a novel method for estimating the elevations of high water 

marks using images collected from diverse sources. The proposed method eliminated the need of 

measuring high water marks in the field. Instead, it relies on computer vision techniques to fuse 

VGI images, which can be crowdsourced data, with high resolution mobile lidar data to recover 

the geospatial locations of high water marks. Mobile lidar data alone cannot provide adequate 

details about high water marks. However, when they are fused with close range VGI images, the 

strengths of both data sources can be harvested. While this research has focused on a limited set 

of data, it does provide an overall framework for combining heterogeneous geospatial data set for 

more efficient post-disaster data collection and damage assessment.  
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ABSTRACT 1 
When a disaster strikes, disaster response operation is very critical to the human lives and assets. 2 
Meanwhile, transportation infrastructure system plays a major role in Search and Rescue (SAR) 3 
or evacuation effort. Roadblock of debris would hinder the trapped people from being rescued in 4 
“Golden 72 hours”. Information gathering, data analyze and decision making are three key 5 
process for the disaster response. While these three elements are extensively investigated in 6 
literatures independently, the study on how to integrated them together as a whole is rare. In the 7 
light of this, the compatibility among them remains a big challenge, and naturally limiting 8 
overall performance of disaster response especially in time constrained and highly uncertain 9 
environment. In addressing to the abovementioned problem, this study proposed a conceptual 10 
framework based on the level of complexity (LOD) aiming at clarify the roles of each elements 11 
and identify how they can be connected together for rapid processing. This framework defined a 12 
5 LODs data management system and for each level, the data types, task assignments, processing 13 
need, data Analytics and decision making need are described. The proposed framework is 14 
targeted at providing decision makers a well-organized mapping system that explore the capacity 15 
of each LODs and their corresponding needs. This framework is also beneficial for data storage 16 
management. Finally, an empirical study based on hurricane sandy is conducted to illustrucute 17 
the performance framework. 18 

 19 

Keywords: LiDAR, Decision Making, Disaster Response, Disaster Management, Visualization 20 
Analysis   21 
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INTRODUCTION  22 
With the frequency and intensity of natural hazards on the rise, communities have become 23 
increasingly vulnerable. Transportation infrastructure systems are critical elements of 24 
communities as they transport people and goods which are blood in the vein of a modern society. 25 
To keep communities running during extreme events, it is imperative to make transportation 26 
systems more resilience. However, this has been compounded by two challenges: 1) the 27 
transportation systems are becoming larger and more complex increasingly complex; and 2) the 28 
existing transportation systems are rapidly aging. For example, in New Jersey, the average age of 29 
bridges is 55-years old. Collectively, these issues have become critical concerns and created 30 
remarkable challenges to the transportation professions [1]. Situational awareness centered on 31 
the extent of damages to transportation infrastructure systems is a critical piece of information 32 
sought by many stakeholders immediately after an extreme event. This is because after a hazard 33 
strikes the failure of transportation infrastructure systems would quickly paralyze a community 34 
in many ways. For example, blockage in the transportation network can impede rescue and life 35 
supporting resources reaching survivors. In another example, failures of critical transportation 36 
facilities can potentially cause secondary hazards.  37 

Given the emergency of disaster scenarios, every second counts. Traditional embed sensor 38 
systems or manually site survey method might not adequately address to reliable and timely 39 
issues of the data collection in cases of mass destruction. Geospatial remote sensing technique, 40 
especially LiDAR, is complementing traditional embed sensor systems or manually site survey 41 
by adequately address to reliable and timely issues of the data collection in cases of mass 42 
destruction. These techniques are quickly filling the gap between the spatial and timely 43 
requirements for information gathering in the disaster response phase. Gigabytes of data are 44 
generated every minute. At the meantime, in the field of operation research, the state of art 45 
algorithms is purposed to solve the disaster search and rescue problems. However, the 46 
deployment of LiDAR in emergency situation is still rare less than 1%, as reported in NCHRP 47 
Report 748 [2]. While these three elements are extensively investigated in literatures 48 
independently, the study on how to integrated them together as a whole is rare. In the light of 49 
this, the compatibility among them remains a big challenge, and naturally limiting overall 50 
performance of disaster response especially in time constrained and highly uncertain 51 
environment. While researchers had exploit the capacity of the state of art technology such as 52 
LiDAR or satellite imagery, how to apply it into specific cases remains rare. As a result, decision 53 
makers are often stuck into a dilemma that even the data are tools are rich – the returns are 54 
diminishing rapidly, because after a certain point the more information and algorithms exist, the 55 
harder it becomes to select a proper tool for the data. Ironically, if without proper extraction 56 
method, an excess of information resists analysis and comprehension in much the same way a 57 
lack of it does. As a result, as the remote sensing data is flooding the world and there exists a 58 
variety of algorithm, the more is calling for a proper framework, one that can extract meaning 59 
from the chaos data and feed the algorithm with sufficient information. 60 

The purpose of this study is developing a LOD conceptual framework aiming at improve the 61 
efficiency of disaster decision making. First, an introduction is given to identify the need of such 62 
a framework. Next, a review of literature is conducted on the exiting data collection method, data 63 
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analysis tools and decision making methods. Third, a conceptual framework is introduced based 64 
on the LOD. This system explores the capacity of the system by connecting the available remote 65 
sensing data to corresponding data analysis tools and decision making method. Then an 66 
empirical study of Hurricane sandy using LiDAR is presented to illustrate how the big data 67 
collected can be transfer into critical input parameters for the Dijkstra’s Shortest path algorithm. 68 
Last, a Monte Carlo simulation is then presented to show how this integrated workflow can help 69 
to improve the accuracy of the performance of decision making. 70 

LITERATURE REVIEW 71 
Disaster response is a decision making process with a short time window.  Different from the 72 
traditional decision making, the emergency operations performance would largely depend on the 73 
time efficiency. For instance, in Search and Rescue (SAR), survival rate is heavily dependent on 74 
the speed of rescue. When rescue time exceeds the golden times of 72 hours, it is as low as 5% 75 
[3]. Moreover, a dilatory operation would expose children and adolescents to trauma and results 76 
in post-traumatic stress as well as other psychological disorders [4].  In the current practice, 77 
disaster response is often consisting of three major process: information gathering, data analytics 78 
and decision making. 79 

In order to achieve an effective disaster response, information gathering is a key element in any 80 
phase of disaster management. Information gathering requires both baseline information and 81 
post-impact information. Baseline information can be quickly obtained based on the history data 82 
in normal circumstance. On the other hand, the challenge research question is how to obtain the 83 
post-impact information quickly and sensitively [5]. Remote sensing technology provides a good 84 
fit in addressing to the abovementioned question. Extensively investigation have been conducted 85 
in deploying new techniques in disaster response such as satellite imagery [6][7]; Aerial imagery 86 
[8][9], LiDAR [10]. While imagery was a key basemap for positioning other features on 87 
cartographic products through visual analysis [8], the further quantitative the disaster scenario 88 
remains difficult. LiDAR, it has great potential to precisely identify and quantify morphological 89 
change [11]. Based on this, Lu et al [12] developed methods for prompt identification of 90 
transportation infrastructure using LiDAR in coastal flooding area. On the other hand, 91 
measurements of debris and potholes volume [13] and distribution [14] are also critical in terms 92 
of search and rescue operation planning. Bull et al [15] pointed out that LIDAR data have 93 
significant advantage in revealing the clast size, thickness and volume of debris, which is a 94 
precise and powerful tool for disaster management. This also aligned with another study [16]. 95 
Based on the precise volume and location of the derbies, Kwan and Ransberger [10] developed 96 
algorithm to improve the speed by helping responder to find the quickest route available instead 97 
of re-routing each time they encounter a blockage. Mikes and Fleck [17] applied LIDAR to 98 
identify the inaccessible transportation network in post disaster and need to establish pre-plans 99 
for routes of ingress to these areas.  100 

Data analysis tools or models are another key component in the disaster response. These tools are 101 
studied from different prospective such as logistic models, geography information systems 102 
(GIS), and etc. Traditionally, the disaster response logistics is studied in the field of operation 103 
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research. Özdamar et al [18] integrated a planning model into a natural disaster logistics 104 
Decision Support System. Yi and Kuma [19] solved the logistics problem arising in disaster 105 
relief activities using ant colony optimization. Golden and Raghavan [20] discussed the 106 
challenges for using Vehicle Routing Problem for disaster relief. GIS is another analysis tool for 107 
natural disaster management. Kwan and Lee [21] examine the potential of implementation of 108 
GIS-based intelligent emergency response systems.  Conventional geospatial response to 109 
disasters has professional geospatial provide support to decision-makers on the ground [22]. The 110 
recent development of web based system encourage more information from crowdsourcing or 111 
Volunteered geographic information (VGI) for disaster response-support [23]. Other tools such 112 
as data mining from social media also contributed to the better inform of disaster situation [24]. 113 

Decision making is the core component in disaster response. Conventionally, decision making 114 
are made based on the experience based judgments or heuristic. Researchers have long been 115 
making this gut feeling more rational, scientific and efficiency. One attempt is eliminating the 116 
bias of the judgment by accumulation preference from different experts such as average analytic 117 
hierarchy process (AHP) [25]. Other researchers proposed methods to patch the incomplete 118 
information [26]. Gigerenzer and Gaissmaier [27] explore the core capacities of heuristics 119 
decision making from psychology prospective.  120 

 121 

Conceptualization of remote sensing data framework for disaster response 122 
Decision making process in disaster response phase is a timely issue. Information gathering, data 123 
analyze and decision making are three key elements for the disaster response. Extensive 124 
investigations have been conducted in all the three process. However, these study are conducted 125 
with the lab environment with in-situ data, abundant time. However, when it comes to disaster, 126 
most of the process should be finished in a narrow time window, data arriving too late for the 127 
data analyze or analyze result arriving too late for experts would result in the chaos of existing 128 
workflow. This chaos in information resist the decision makers from a comprehensive 129 
understanding of the real disaster situation. A flood in this data for decision makers would act 130 
much the same way as lacking of it.  131 
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Decision Making Tools

• Expert Judgment
• Decision Making Models

Data Analytics Tools

• Geography Information System 
and spatial analysis

• Logistics Models
• Data Mining Approach
• etc.

Chaos Data
• Type: Imagery, LiDAR, VGI
• Scale: Municipality Scale, Local 

scale
• Resolution: mm level to km level
• Accuracy: mm accuracy  to 

meters accuracy

Disaster Response

 132 

Figure 1 Key Component for Disaster Response 133 

This part, the conceptualized framework for adopting remote sensing data for disaster response is 134 
defined as shown in figure 2. This framework aimed at prioritizing the remote sensing 135 
information based on the level of detail (LOD). For each LOD, the task assignment, the data 136 
management characters, the assignment goals, data processing, data analyze and decision making 137 
need are clarified. This framework would help decision makers to envision the capability of 138 
different LOD of remote sensing information in terms of disaster response. A five LODs systems 139 
is proposed in this conceptualized framework.  LOD 0 simply indicates the existing of remote 140 
sensing data. The availability of information is the prior step for any further analytics and 141 
decision making. After envisioning the availability of the data, LOD 1 provides a global picture 142 
about the disaster situation. This picture would help decision makers to set focus and objectives 143 
for their further response. For this LOD, the scale is suggested to be segmented into municipality 144 
scale with 5km by 5km blocks. In this level of detail of data, coarse scale and relatively low 145 
accuracy data are required for the data inputs. This is useful for the experts to have a general 146 
recognition of the disaster scenarios based on effort saving methods such as visual analysis. 147 
Subsequently, when the focus and objectives are defined, LOD 2 provides information to 148 
identify the hard-hit locations and set the search and rescue priorities. Data are suggested to save 149 
in 500m by 500 meter blocks.  In this level, intermediately (30 to 100 pts/m2) density and 150 
medium accuracy (0.05m to 0.20m) are required for the analysis. Rapid computation such as 151 
terrain change detection are necessary to incorporate with the visual inspection. For most of the 152 
disaster response phase, there is only enough time and computation resource budget for 153 
processing data with LOD 0 to LOD 2. However, more advanced computation efforts are 154 
necessary for detail assessment of critical infrastructure. This is extremely important in 155 
preventing secondary hazard cost by the failure of this critical infrastructures such as unclear 156 
power plants or bridges. LOD 3 and LOD 4 are targeted for disaster recovery phase which both 157 
time and resource are abundant. LOD 3 looks into details of individual infrastructure with 158 
require fine (100 to 1000 pts/m2) density and medium accuracy (0.05m to 0.20m). The purpose 159 
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for this level is to extract parameter of details for accessing and analyzing the risk of 160 
infrastructures. LOD 4 is a component level scale that utilize extra fine density (> 1000 pts/m2) 161 
and high accuracy (<0.05 m) of data to find the micro level of damage details such as cracks. The 162 
details of each LOD are summarized in table 1 and table 2. 163 

For Each LOD

Conceptual Framework For Disaster Response

LOD 0 LOD 1 LOD 2 LOD 3 LOD 4

Features
Scale

Value Of Information
Density

Accuracy

Analysis ToolsAssignment Goal
Detail Task 1
Detail Task 2

...

Data 
Processing 

Tools

Data 
Analytics 

Tools

Decision 
Making Tool

Level Of Detail (LOD)

 164 

Figure 2 structure of conceputal framework for disaster response 165 

Data management 166 
Managing remote sensing is becoming a growing problem. In disaster response, large collections 167 
of different remote sensing or geospatial data are accumulated by different organizations, but 168 
how to keep track of what they are and what kind of information they can be provided to 169 
decision makers is a big challenge. This challenge largely limit the decision experts are other 170 
users from adopting them in their application. Especially for LiDAR, according to ASPRS [28] 171 
standard, each of the points occupied around 28 bits. Gigabytes or even Terabytes of data can be 172 
obtained. This huge amount of data is computation exhaustive if save in one file. A proper data 173 
structure index or file management system is necessary to reveal the content of the data without 174 
the effort of loading the datasets. The suggested scale for each LOD is tantamount to the 175 
datasets. This framework enables accessibility to the data without exhaustive computation effort. 176 
The data are segmented into different scale blocks for the storage and each storage file has a 177 
location index that enable the function of query. From the conceptual framework, each LOD are 178 
segmented into small blocks. This size has a maximize data size of 1 gigabyte, which can be 179 
processed using the normal computers. 180 

LiDAR Data Collection Case Study: Hurricane Sandy 181 
LOD 0 Envision the availability of geospatial data 182 
In 2010, Hurricane Sandy, the biggest Atlantic storm in United States history, swept through the 183 
Caribbean and up the East Coast of the United States. The storm is estimated to have cost over 184 
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$68 billion (2013 USD), and at least killed 286 people in the country.  This study utilized the 185 
data collected pre and after this catastrophic disaster to validate the workflow mentioned in the 186 
previously. 187 

This study utilized both Airborne LiDAR and Mobile LiDAR system to investigate into the 188 
feasibility of rapid transportation network accessibility identification in disaster response phase 189 
based on hurricane Sandy. The LiDAR data include both baseline data and event data based on 190 
hurricane Sandy along the Atlantic coast. 191 

Targeted at hurricane Sandy, USGS conducted two survey surveys right before (Oct 26) and 192 
after (Nov 1-5) its occurrence using the Experimental Advanced Airborne Research Lidar 193 
(EAARL) system. Another survey attempts are also conducted in 2010. From August 28 to 194 
September 11 2010, US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry 195 
Technical Center of expertise (JALBTCX) performed another coastal survey along the Atlantic 196 
coast of NJ and New York (Rockaway). 197 

LOD 1 Gaining knowledge of disaster situation and set focus and objectives for disaster response 198 
In disaster situation decision making, the best way to extract meaning from the data is to make it 199 
visible for the experts. General visual inspection is a step that decision makers are presented with 200 
a LiDAR based triangulated irregular network (TIN) map. This map contains the terrain 201 
information of the affected area that can assist experts to understand overall damage pattern of 202 
the disaster area and give them a sense of real damage situation. By glancning through the map, 203 
some input features for disaster operations can be obtained. 204 

1. Identification of decision making units (DMUs). In the Search and Rescue (SAR) 205 
decision making (DM) process, DMUs are referred to the vulnerable locations that 206 
require Search and Rescue (SAR) operations. Quick identification of how many decision 207 
making units and how vulnerable they are, is the pre-step prior to any Search and Rescue 208 
effort can be made. 209 

2. Identify the resource allocation site. Whenever disasters strike, the critical need for 210 
effective and efficient emergency response urges for a rapid deployment of resources 211 
(e.g. medical resources, food, clothing, shelter, etc.). It includes activities such as 212 
implementing relief plans and providing all necessary emergency services. Thus rapidly 213 
identifying the potential site for the resource allocation is also a necessary step. 214 

3. Quick identification of accessible transportation network. Road obstruction by debris can 215 
disrupt the Search and Rescue (SAR) operations. LiDAR based terrain map have the 216 
potential probability to visualize the debris on the road which provides a sense of debris 217 
blockage distribution in the Search and Rescue (SAR) path selection. 218 

 219 

From the visualization analysis result, the whole shoreline area along New Jersey and New York 220 
City, most severe damage is identified including Rockaway Park, NYC, Normandy Beach, New 221 
Jersey, Seaside heights New Jersey, Ortley Beach, New Jersey. Figure 1 shows the triangulated 222 
irregular network (TIN) map converted by airborne LiDAR data for the rockaway, NYC. This 223 
map is colored by the elevation. From the map, it shows that most of the damage occurs along 224 
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the shoreline area, as highlighted in the bottom of the map. These houses are situated in the 225 
relatively less dense residential area. In the north of the most affected area, there is some 226 
recreation area, which might be useful for temporary evacuation in case of emergency. In the 227 
northeast of the severe damage area, a bridge is connecting the far roackaway area to the inland. 228 
This bridge serves as a channel for resource transportation and SAR operation. Thus to prevent 229 
the potential secondary hazard caused by the failure of the bridge, further inspections are 230 
necessary to validate whether this piece of critical transportation facilities are safe to use.In the 231 
left side of the map, there is a large area of empty space, which might be used as the temporary 232 
debris piling site. 233 

 234 

Figure 3 TIN Map for Rockaway NYC 235 

 236 

Figure 4 TIN Map for Ortley Beach, NJ 237 

 238 

LOD 2 Identify the hard-hit locations and set search and rescue priorities 239 
Table 3 Bridge Damage states visual inspection Guideline by INDOT 240 

Items RED TAG 
Movement at Expansion 
Joints 

> 6 in. offset in vertical or horizontal 
alignment 
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Seats at Expansion Joints unseating 
Columns, Cross-Beams and 
Piers 

bar buckling in RC beams, columns and 
piers 
local buckling in steel columns 

Approach/ Abutment interface > 6 in. settlement 
Roadway Impassible 

 241 

Some agencies including INDOT [29], and FEMA HAZUS [30] provides some guidance to 242 
rapidly identify the unsafe bridges and other critical transportation infrastructures by visual 243 
inspection. Even though, the stress and strain or failure mechanism cannot be directed obtained 244 
by LiDAR systems, the significant failure of the bridges can be reflected in shape and 245 
deformation measurements. Indicators of failure of the bridges can be discovered in Damage 246 
classification tables for bridges. Both approaches provide guidance to the visual inspection based 247 
on the LiDAR data. 248 

Table 4 Qualitative Damage State Descriptions Defined by Amending HAZUS for Typical 249 

Hurricane-Induced Bridge Damage (FEMA HAZUS [30]) 250 

Damage 
state 

Description 

Slight Minor cracking and spalling to the abutment, cracks in shear keys 
at abutments, minor spalling and cracks at hinges, minor spalling 
at the column damage requires no more than cosmetic repair, 
minor cracking to the deck, or slight damage to operator house. 

Moderate Any column experiencing moderate shear cracks cracking and 
spalling column structurally still sound, moderate movement of the 
abutment 2 in., extensive cracking and spalling of shear keys, any 
connection having cracked shear keys or bent bolts, keeper bar 
failure without unseating, rocker bearing failure, moderate 
settlement of the approach, moderate scour of the abutment or 
approach, damage to guardrails, wind and/or water damage to 
operator house resulting in switchboard or content damage. 

Extensive Any column degrading without collapse—shear failure column 
structurally unsafe, significant residual movement at connections, 
or major settlement approach, vertical offset of the abutment, 
differential settlement at connections, shear key failure at 
abutments, extensive scour of abutments, or submerged electrical 
or mechanical equipment. 

Complete Any column collapsing or connection losing all bearing support, 
which may lead to imminent deck collapse, tilting of substructure 
due to foundation failure. 

 251 

While the general visual inspection allows the decision makers to have a big picture of the 252 
affected area, detail visual inspection enables them to zoom in on details for more attentive 253 
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assessments. Special attention must be made on the critical infrastructures, which is a guarantee 254 
of societal functionality and safety [31]. Without properly taken care of, these critical facilities 255 
can generate a second hazard to the local community. For example, in August 1 2007, the 256 
collapse of I-35W Mississippi River Bridge killed 13 people and injures 145. Thus, a rapid 257 
inspection of whether this acute transportation facility can maintain its normal performance is 258 
essential and timely after the occurrence.  259 

 260 

a) Debris Volume Quantification 261 

As concluded in the visual inspection stage, one of the most severe damage areas is in Orltey 262 
beach along the shoreline area. However, emergency vehicles might be impassable to this 263 
vulnerable area due to the obstruction of debris. In the previous stage, it is focused only on the 264 
post disaster data, which provide no baseline for the comparison. Thus to what extent is the 265 
debris piling above the ground and how much cleaning effort is required to get access to the 266 
damage locations are uncertain. To address to this fact, not only the event data, but also the 267 
baseline data is needed in this stage to quantify and locate the debris. Change detection is 268 
conducted in ArcGIS to identify the volume and the location of the road blockage. 269 

  270 

 271 

Figure 5 Quantification of the Debris and Identification of Accessible Route 272 

Disaster can generate large amount of debris and the accumulation of debris will in turn impede 273 
rescuer, emergencies and lifetime support reaching researching survivors. The importance of 274 
measuring the volume and location of debris is pointed out by [10] [15]. The purpose of this 275 
stage is to quantify the volume of debris and locate their distribution for the SAR operations. The 276 
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identification of road blockage process is implemented in ArcGIS and the Pseudo code is 277 
provided as below: 278 

 279 

Figure 6   Pseudo code for debris QUANTIFIATION      280 

 281 

b) Detail Visual Analysis 282 

In some locations, there exist some critical infrastructures that will tremendously impact the SAR 283 
operation. For instance, Rockaway Bridge is the life channel for the SAR operations. Thus, the 284 
potential failure of this bridge can be a tremendous threat to societal functionality and safety of 285 
the local community. Thus detail inspection is required.  From guidelines by the FEMA HAZUS 286 
[30] and INDOT [29], they suggest as an inspection based on the deformation of some critical 287 
components including damage at column, cross beam, movements at joints and abutment 288 
interface etc. Inspection of the bridge superstructure includes: 289 

• Collapse of bridge span 290 
• Significant displacement in Approach/ Abutment interface 291 
• Lateral displacement of the superstructure (caused by Movement at Expansion Joints)  292 
• Steep slope (collapse of columns, failure of bridge decks etc.) 293 
• Significant pothole or debris piling 294 
• Fallen of light and traffic signals 295 
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 296 

Figure 7 Top view of Rockaway Bridge 297 

From the observation, there is no significant vertical, horizontal or lateral displacement which 298 
exceeds the 6 inch (15.24cm) threshold suggested by INDOT. Thus based on the inspection, this 299 
bridge is safe to use. 300 

 301 

Simulation 302 

The estimated routing time between two nodes is simplified and defined as: 303 

rdeb,trarou t+ tt =                                                                                  (1) 304 

Where, tral, time required traveling between two nodes; 305 

           tdeb, time required clearing off the debris between two nodes 306 

The time from the start to each node is calculated as the shortest path from the start to each node 307 
using the Dijkstra shortest path algorithm. To simulate the uncertainty and the error of debris 308 
volume measured by the LiDAR information and the experience of the experts, the test is defined 309 
as: 310 

tdeb= tdeb,r + ɛ                                                                                         (2) 311 

where, 312 

tdeb,r is true debris clearing off time; 313 

ɛ is total error in the measurement,  314 

ɛ ~ N(μ, σ2)           (3) 315 
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The time from the start to each node is calculated as the shortest path from the start to each node 316 
using the Dijkstra shortest path algorithm. 317 

 318 

 319 

Figure 7 Diagram of transportation network 320 

 321 

           for the debris measured by LiDAR information, μ=20% x tdeb,r;, σ=0; 322 

           for the debris measured by expert experience, μ=100% x tdeb,r,  σ=50% x tdeb,r; 323 

Table 5 Simulation result 324 

(In minutes) 325 

Nod
es 

Travel 
Time & 

Real 
Debris

rdeb,tra t+ t  

Travel 
Time & 
Debris 

Estimated 
by Experts 

eε+rdeb,tra t+ t  

Travel 
Time & 
Debris 

Estimated 
by LiDAR 

Lε+rdeb,tra t+ t  

Nod
es 

Travel 
Time & 

Real 
Debris

rdeb,tra t+ t  

Travel 
Time & 
Debris 

Estimated 
by Experts 

eε+rdeb,tra t+ t  

Travel 
Time & 
Debris 

Estimated 
by LiDAR 

Lε+rdeb,tra t+ t  
 alTRe  ExpertT  

( )%t∆  LiDART  ( )%t∆   alTRe  ExpertT  
( )%t∆  LiDART  ( )%t∆  

1 182 279 53.0
4% 201 10.6

6% 16 298 443 48.6
0% 332 11.2

8% 
2 210 326 55.1

0% 238 13.4
3% 17 403 588 45.9

8% 448 11.0
7% 
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3 204 300 46.9
3% 228 11.6

7% 18 401 616 53.5
5% 451 12.5

7% 
4 97 108 11.3

5% 99 2.27
% 19 410 613 49.5

4% 455 11.0
2% 

5 204 252 23.5
5% 214 4.90

% 20 417 677 62.2
6% 477 14.3

4% 
6 352 531 50.7

2% 394 12.0
5% 21 253 386 52.5

0% 282 11.3
8% 

7 405 611 50.9
0% 447 10.4

7% 22 250 310 23.8
9% 264 5.44

% 
8 358 568 58.7

4% 400 11.8
4% 23 142 171 20.5

2% 148 4.08
% 

9 321 446 39.0
4% 346 7.85

% 24 166 183 10.2
7% 169 2.05

% 
10 271 395 45.5

8% 296 9.15
% 25 347 473 36.2

5% 385 11.0
1% 

11 303 426 40.5
1% 333 9.77

% 26 392 580 48.0
0% 431 10.0

0% 
12 351 550 56.7

6% 396 12.7
6% 27 422 602 42.7

2% 463 9.72
% 

13 356 527 48.0
3% 395 11.0

1% 28 414 634 53.2
2% 460 11.0

6% 
14 392 646 64.7

3% 448 14.2
3% 29 418 600 43.4

8% 460 10.0
0% 

15 441 750 70.1
1% 509 15.3

3% 30 376 516 37.2
5% 407 8.35

% 
Tota

l 9556 1410
5 

47.6
1% 

1057
6 

10.6
8%       

  326 

The result from the Monte Carlo simulation shows that the routing time has a significant 327 
decreased as the input parameters directly come from the objective extraction from LiDAR data 328 
than from expert’s subjective input.  The change amount is from 47.61 to 10.68%.  This 329 
reduction indicates that LiDAR assist in quantifying the debris volume does help to improve the 330 
algorithm performance. 331 

Since the error of the input is defined as a normal distribution with two variables: mean and 332 
variance. Another simulation is conducted to see how the method purposed will perform as these 333 
variables changes. The results indicate objective input from resources such as LiDAR would 334 
have low mean error (systematic error) and zero standard deviation, which would likely to results 335 
in few increase percentage (10%). On the other hand, subjective input from the experts, both 336 
high error in mean and standard deviation are likely to results in large increment percentage. 337 

Conclusion 338 
Disaster response is time sensitive which requires better coordination between data, processing 339 
tools and decision making tools. In this paper, a disaster response level of complexity (LOD) is 340 
developed. The remote sensing data are classified into 5 levels according to the LOD. For each 341 
LOD, the purpose, suggested accuracy and density, data processing, data analytics and decision 342 
making needs are described. Subsequently, the framework was evaluated using an empirical case 343 
of hurricane sandy. 344 

 The empirical study shows that the conceptualized framework is well-structure, which can help 345 
the experts to map the objectives of their decision making need to more specific tools such as 346 
processing tools, data analytics tool and decision making tools. LOD 0 provides information that 347 
help the users to envision the availability of remote sensing data. LOD 1 enhance the disaster 348 
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situation awareness and help to set the focus and objectives of disaster response. After LOD 1, 349 
further information is provided by LOD 2 make the response plan and set focus and priorities. In 350 
additional, LOD 3 and LOD 4 are complemented as a way for accessing the risk of critical 351 
infrastructures such as power plant or bridges, which prevents the happening of secondary 352 
hazard. The proposed LODs conceptual framework is well structured, which can also benefit the 353 
data management needs. The suggested scale for data management makes data storage more 354 
tangible for data query. In additional, this conceptual framework can be extended for building 355 
and other utilities. 356 

An empirical study on hurricane sandy was conducted in this study, the result shows that the use 357 
of remote sensing typically LiDAR in this case, using the proposed framework largely improve 358 
the accuracy and time for the decision models. Compared to other cases that cannot keep track of 359 
the content of the remote sensing data, the proposed work help experts to not only visualized 360 
analysis (LOD 1) the disaster area after hurricane sandy strike, but extract debris volume (LOD 361 
1) and rapidly access the transportation structures (LOD2). 362 

It is important to note that this conceptual framework is tested with Monte Carlo Simulation 363 
rather than the hurricane sandy real case. The detail time and resource leveraging effort are not 364 
quantified in this research. For future researches. Real response data and surveys from the 365 
decision makers are necessary to implemented in evaluate the practical value of the proposed 366 
framework. 367 
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Table 1 Summary of Level of Detail (LOD) and corresponding goals and processing need 

 Scale Value of 
timely 
informati
on 

Density Accuracy Goals Data 
Processi
ng 

Data 
Analyti
cs 

Decision 
Making 

LO
D 0 

Full-Scale $$$$ - Low (>0.2 
m) 

Envision the availability of 
geospatial data 

Basic - Judgment 

LO
D 1 

Municipalit
y   
(5km x 
5km) 

$$$$ Coarse 
Scale  (0 
to 30 
pts/m2) 

Low (>0.2 
m) 

Gaining knowledge of disaster 
situation and set focus and 
objectives for disaster response  

Basic Simple 
models 

Judgment 
to 
decision 
making 
models 

LO
D 2 

Building 
Block/ 
critical 
infrastruct
ures  (500m 
x 500m) 

$$$ Interme
diate 
(30 to 
100 
pts/m2) 

Medium 
(0.05m to 
0.20 m) 

Identify the hard-hit locations 
and set search and rescue 
priorities 

Basic to 
Advance
d 

Simple 
to 
advanc
ed 
models 

Judgeme
nt to 
decision 
making 
models 

LO
D 3 

Individual 
infrastruct
ure  (50m x 
50m) 

$ Fine 
(100 to 
100 
pts/m2) 

Medium 
(0.05m to 
0.20 m) 

Extraction of parameter details 
for access and analyze Risks of 
infrastructure 
 

Advance
d 

advanc
ed 
models 

- 

LO
D 4 

Component 
Details  
(1m x 1m) 

$ Extra 
Fine (> 
1000 
pts/m2) 

High (< 
0.05 m) 
 

Micro level component detail 
damage assessment for failure 
mechanism studies 

Advance
d 

advanc
ed 
models 

- 

Legend: $$$$ extremely need in initial disaster response phase (a few hours). $$$ need in the early disaster response phase 
(within a day); $ potential useful in disaster response phase (a week or more). 

 

Table 2 dETAIL DESCRIPTION FOR LOD0 TO LOD 2 FOR DISASTER RESPONSE 
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 Tasks assignment Example Question Data Processing Data 
Analytics 

Decision 
Making 

LOD 0 Envision the availability of geospatial data 
Identify the existing of data Is the data available in 

X?  
- - Judgement 

LOD 1 Have a synoptic view of disaster area 
and set focus and objectives for 
disaster response 

    

Quickly assess the severity impact of 
damage; 

How severity is the 
impact of the disaster X, 
can it declare a major 
Disaster? 

Visual 
Representation , 
Change detection 
and etc. 

- Judgement 

Identify the accessibility of 
transportation network for escape 
routes, ambulances services and 
search and rescue teams to reach; 

Is routine evacuation 
transportation free of 
obstruction?  
Is location X accessible by 
ambulance? of critical 
infrastructure; 

Visual 
Representation , 
Change detection 
and etc. 

- Judgement 

Analyze Critical Infrastructure 
dependencies, interdependencies, and 
associated cascading effects; 

What is the impact area if 
critical infrastructure X 
fail?  

Visual 
Representation 

Spatial 
analysis 

Judgement 

Set focus and objective. 
 

What is the potential 
candidate locations for 
sending search and 
rescue crews? 

Visual 
Representation , 
Change detection 
and etc. 

Spatial 
analysis 

Judgement  
or 
Decision 
making 
models 

LOD 2 Identify the hard-hit locations and set search and rescue priorities 
Quick identification infrastructure 
damage status based on the terrain 
change? 

How many percentage of 
the infrastructure will be 
at high risk if given a 
terrain change threshold 
of x? 

Visual 
Representation , 
Change detection 
and etc. 

Probability 
based 
model 

Judgement 
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Calculation of the potential demand for 
the evacuation and shelters based on 
the damage of residential buildings 

How many people need to 
evacuated from the 
potential disaster zone? 

Visual 
Representation , 
Change detection 
and etc. 

Spatial 
analysis 

Judgement 

Analyze building dependencies, 
interdependencies, and associated 
cascading effects; 

What is cascading effects 
of the sea front buildings in 
terms of debris flow during 
hurricane sandy? 

Visual 
Representation , 
Change detection 
and etc. 

Spatial 
analysis 

Judgement 

Analysis the condition (safe or unsafe) 
of critical infrastructure; 

Based on the elevation 
change and visual 
inspection, is it the 
critical infrastructure X 
safe to use? 

Detail Visual 
Representation  

- Judgment 

Roughly quantification of debris 
volume; 
 

What is the volume of the 
debris if we would like to 
clear the obstruction in 
Highway X from location 
A to B?  

Visual 
Representation , 
Change detection 
and etc. 

- Judgement 

Set focus on the hotspot for search and 
rescue are 

What is the priority 
sequential for the search 
and rescue teams? 

Visual 
Representation , 
Change detection 
and etc. 

Operation 
research 
models, 
spatial 
analysis 

Judgement  
or 
Decision 
making 
models 
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